Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Bot ; 100(7): 1332-43, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23660567

RESUMEN

PREMISE OF THE STUDY: Xylem structure determines the hydraulic and mechanical properties of a stem, and its plasticity is fundamental for maintaining tree performance under changing conditions. Unveiling the mechanism and the range of xylem adjustment is thus necessary to anticipate climate change impacts on vegetation. METHODS: To understand the mechanistic process and the functional impact of xylem responses to warming in a cold-limited environment, we investigated the relationship between temperature and tracheid anatomy along a 312-yr tree-ring chronology of Larix sibirica trees from the Altay Mountains in Russia. KEY RESULTS: Climate-growth analyses indicated that warming favors wider earlywood cell lumen, thicker latewood walls, denser maximum latewood, and wider rings. The temperature signal of the latewood was stronger (r > 0.7) and covered a longer and more stable period (from June to August) than that of earlywood and tree-ring width. Long-term analyses indicated a diverging trend between lumen and cell wall of early- and latewood. CONCLUSIONS: Xylem anatomy appears to respond to warming temperatures. A warmer early-growing season raises water conduction capacity by increasing the number and size of earlywood tracheids. The higher-performing earlywood tracheids promote more carbon fixation of the latewood cells by incrementing the rate of assimilation when summer conditions are favorable for growth. The diverging long-term variation of lumen and cell wall in earlywood vs. latewood suggests that xylem adjustments in latewood increase mechanical integrity and support increasing tree size under the ameliorated growing conditions.


Asunto(s)
Cambio Climático , Ecosistema , Larix/anatomía & histología , Larix/fisiología , Temperatura , Monitoreo del Ambiente/métodos , Federación de Rusia , Factores de Tiempo , Xilema
2.
Sci Rep ; 12(1): 7752, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35562178

RESUMEN

Temperature and precipitation changes are crucial for larch trees growing at high-elevation sites covered by permafrost in the Altai-Sayan mountain range (ASMR). To contextualize the amplitude of recent climate fluctuations, we have to look into the past by analyzing millennial paleoclimatic archives recording both temperature and precipitation. We developed annually resolved 1500-year tree-ring cellulose chronologies (δ13Ccell, δ18Ocell), and used these new records to reconstruct the variability in local summer precipitation and air temperature. We combined our new local reconstructions with existing paleoclimatic archives available for the Altai. The data show a strong decreasing trend by ca. 49% in regional summer precipitation, along with a regional summer temperature increase towards the twenty-first century, relative to the preceding 1500 years. Modern dry conditions (1966-2016 CE) in the ASMR are the result of simultaneous summer warming and decreased precipitation. Our new reconstructions also demonstrate that climate change in the ASMR is much stronger compared to the global average.


Asunto(s)
Larix , Hielos Perennes , Cambio Climático , Bosques , Temperatura , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA