Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Analyst ; 147(16): 3692-3708, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35848500

RESUMEN

Silica nanoparticles (SiNPs) are used in consumer products, engineering and medical technologies. Attractive properties of SiNPs (e.g. size/surface-modification) enhance usage and thus the likelihood of environmental/human exposures. The assessment of health risks associated with exposures to SiNPs requires information on their relative potencies and toxicity mechanisms. In this work, phagocytic J774 cells were exposed to amorphous pristine (15, 30, 75 nm) and surface-modified (-NH2, -C3COOH, -C11COOH, -PEG) SiNP variants, and internalization was assessed by transmission electron microscopy (TEM), while cellular ATP was measured as a cytotoxicity endpoint. Furthermore, mitochondrial fractions from J774 cells were exposed to these SiNP variants (5, 15 µg mL-1), as well as two reference particles (SiNP 12 nm and TiO2), and proteomic changes were analyzed by mass spectrometry. Ingenuity Pathway Analysis was used to identify toxicity pathways. TEM analyses showed SiNP internalization and distribution along with some changes in mitochondrial structure. SiNP size- and surface-modification and chemical composition-related changes in mitochondrial proteins, including key proteins of the respiratory complex and oxidative stress, were evident based on high content mass spectrometry data. In addition, the dose-related decrease in cellular ATP levels in SiNP-exposed cells was consistent with related mitochondrial protein profiles. These findings suggest that physicochemical properties can be determinants of SiNP exposure-related mitochondrial effects, and mitochondrial exposures combined with proteomic analysis can be valuable as a new approach methodology in the toxicity screening of SiNPs for risk assessment, with added insight into related toxicity mechanisms.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Adenosina Trifosfato , Humanos , Nanopartículas/química , Nanopartículas/toxicidad , Tamaño de la Partícula , Proteómica , Dióxido de Silicio/química , Dióxido de Silicio/toxicidad
2.
Analyst ; 145(14): 4867-4879, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32467957

RESUMEN

Silica nanoparticles (SiNPs) are used in a wide range of consumer products, engineering and medical applications, with likelihood of human exposure and potential health concerns. It is essential to generate toxicity information on SiNP forms and associated physicochemical determinants to conduct risk assessment on these new materials. To address this knowledge gap, we screened a panel of custom synthesized, well-characterized amorphous SiNPs pristine and surface-modified (-C3-COOH, -C11-COOH, -NH2, -PEG) of 5 different sizes: (15, 30, 50, 75, 100 nm) for their oxidative potential using an acellular assay. The assay is based on oxidation of dithiothreitol (DTT) by reactive oxygen species and can serve as a surrogate test for oxidative stress. These materials were characterized for size distribution, aggregation, crystallinity, surface area, surface modification, surface charge and metal content. Tests for association between oxidative potential of SiNPs and their physicochemical properties were carried out using analysis of variance and correlation analyses. These test results suggest that the size of amorphous SiNPs influenced their oxidative potential irrespective of the surface modification, with 15 nm exhibiting relatively higher oxidative potential compared to the other sizes. Furthermore, SiNP surface area, surface modification and agglomeration in solution also appeared to affect oxidative potential of these SiNPs. These findings indicate that physicochemical properties are critical in influencing the oxidative behaviour of amorphous SiNPs, with potential to trigger cellular oxidative stress and thus toxicity, when exposed. This information advances our understanding of potential toxicities of these amorphous SiNPs and supports risk assessment efforts and the design of safer forms of silica nanomaterials.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Humanos , Nanopartículas/toxicidad , Estrés Oxidativo , Tamaño de la Partícula , Especies Reactivas de Oxígeno , Dióxido de Silicio/toxicidad
3.
J Exp Bot ; 65(20): 6069-80, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25170101

RESUMEN

To our knowledge, this study represents the first high-throughput characterization of a stigma proteome in the Triticeae. A total of 2184 triticale mature stigma proteins were identified using three different gel-based approaches combined with mass spectrometry. The great majority of these proteins are described in a Triticeae stigma for the first time. These results revealed many proteins likely to play important roles in stigma development and pollen-stigma interactions, as well as protection against biotic and abiotic stresses. Quantitative comparison of the triticale stigma transcriptome and proteome showed poor correlation, highlighting the importance of having both types of analysis. This work makes a significant contribution towards the elucidation of the Triticeae stigma proteome and provides novel insights into its role in stigma development and function.


Asunto(s)
Grano Comestible/metabolismo , Flores/metabolismo , Proteoma , Proteómica/métodos , Grano Comestible/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Polen/crecimiento & desarrollo , Polen/metabolismo
4.
J Fungi (Basel) ; 9(4)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37108900

RESUMEN

Mitochondria possess their own DNA (mtDNA) and are capable of carrying out their transcription and translation. Although protein synthesis can take place in mitochondria, the majority of the proteins in mitochondria have nuclear origin. 3' and 5' untranslated regions of mRNAs (3'-UTR and 5'-UTR, respectively) are thought to play key roles in directing and regulating the activity of mitochondria mRNAs. Here we investigate the association between the presence of 3'-UTR from OXA1 gene on a prokaryotic reporter mRNA and mitochondrial translation in yeast. OXA1 is a nuclear gene that codes for mitochondrial inner membrane insertion protein and its 3'-UTR is shown to direct its mRNA toward mitochondria. It is not clear, however, if this mRNA may also be translated by mitochondria. In the current study, using a ß-galactosidase reporter gene, we provide genetic evidence for a correlation between the presence of 3'-UTR of OXA1 on an mRNA and mitochondrial translation in yeast.

5.
PLoS Biol ; 7(4): e96, 2009 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-19402753

RESUMEN

One-third of the 4,225 protein-coding genes of Escherichia coli K-12 remain functionally unannotated (orphans). Many map to distant clades such as Archaea, suggesting involvement in basic prokaryotic traits, whereas others appear restricted to E. coli, including pathogenic strains. To elucidate the orphans' biological roles, we performed an extensive proteomic survey using affinity-tagged E. coli strains and generated comprehensive genomic context inferences to derive a high-confidence compendium for virtually the entire proteome consisting of 5,993 putative physical interactions and 74,776 putative functional associations, most of which are novel. Clustering of the respective probabilistic networks revealed putative orphan membership in discrete multiprotein complexes and functional modules together with annotated gene products, whereas a machine-learning strategy based on network integration implicated the orphans in specific biological processes. We provide additional experimental evidence supporting orphan participation in protein synthesis, amino acid metabolism, biofilm formation, motility, and assembly of the bacterial cell envelope. This resource provides a "systems-wide" functional blueprint of a model microbe, with insights into the biological and evolutionary significance of previously uncharacterized proteins.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Genoma Bacteriano , Proteoma/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Complejos Multiproteicos/genética , Mapeo de Interacción de Proteínas/métodos
6.
Int J Radiat Biol ; 97(6): 824-832, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33164603

RESUMEN

BACKGROUND: Accumulated body of evidence shows that ionizing radiation increases the risk of cataracts. The mechanisms are not clear and the International Commission on Radiological Protection indicates a need for research into understanding the process, particularly at low doses and low dose rates of exposure. PURPOSE: This study was designed to examine protein-level modifications in a human lens epithelial (HLE) cell-line following radiation exposures. MATERIALS AND METHODS: HLE cell-line was subjected to X-irradiation at varied doses (0-5 Gy) and dose-rates (1.62 cGy/min and 38.2 cGy/min). Cells were collected 20 h post-exposure, lysed and proteins were clarified following fractionation by a molecular weight cut-off filtration method. Fractionated cellular proteins were enzymatically digested and subjected to mass spectrometry analysis. RESULTS: Statistically significant radiation dose-related protein changes compared to the control group were identified. Heatmap and hierarchical clustering analysis showed dose-rate dependant responses. Pathway analysis mapped the proteins to biological functions of mitochondrial dysfunction, reactive oxygen species generation, cell death, cancer, organismal injury and amyloidosis. CONCLUSION: Overall findings suggest that ionizing radiation exposure of HLE cells by mediating dose rate-dependant oxidative stress and cell death-related mechanisms, can be relevant to cataractogenesis.


Asunto(s)
Células Epiteliales/efectos de la radiación , Cristalino/patología , Traumatismos por Radiación/patología , Línea Celular , Relación Dosis-Respuesta en la Radiación , Células Epiteliales/patología , Humanos , Traumatismos por Radiación/etiología , Rayos X/efectos adversos
7.
Plant Sci ; 250: 51-58, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27457983

RESUMEN

The stigma, the specialized apex of the Brassicaceae gynoecium, plays a role in pollen capture, discrimination, hydration, germination, and guidance. Despite this crucial role in reproduction, the global proteome underlying Brassicaceae stigma development and function remains largely unknown. As a contribution towards the characterization of the Brassicaceae dry stigma global proteome, more than 2500 Brassica napus mature stigma proteins were identified using three different gel-based proteomics approaches. Most stigma proteins participated in Metabolic Processes, Responses to Stimulus or Stress, Cellular or Developmental Processes, and Transport. The stigma was found to express a wide variety of proteins with demonstrated roles in cellular and organ development including proteins known to be involved in cellular expansion and morphogenesis, embryo development, as well as gynoecium and stigma development. Comparisons to a corresponding proteome from a very morphologically different Poaceae dry stigma showed a very similar distribution of proteins among different functional categories, but also revealed evident distinctions in protein composition especially in glucosinolate and carotenoid metabolism, photosynthesis, and self-incompatibility. To our knowledge, this study reports the largest Brassicaceae stigma protein dataset described to date.


Asunto(s)
Brassica napus/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteoma , Brassica napus/crecimiento & desarrollo , Brassica napus/metabolismo , Cromatografía Liquida , Electroforesis en Gel Bidimensional , Flores/genética , Flores/metabolismo , Proteínas de Plantas/metabolismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA