Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
EMBO J ; 43(5): 836-867, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38332377

RESUMEN

The meiotic chromosome axis coordinates chromosome organization and interhomolog recombination in meiotic prophase and is essential for fertility. In S. cerevisiae, the HORMAD protein Hop1 mediates the enrichment of axis proteins at nucleosome-rich islands through a central chromatin-binding region (CBR). Here, we use cryoelectron microscopy to show that the Hop1 CBR directly recognizes bent nucleosomal DNA through a composite interface in its PHD and winged helix-turn-helix domains. Targeted disruption of the Hop1 CBR-nucleosome interface causes a localized reduction of axis protein binding and meiotic DNA double-strand breaks (DSBs) in axis islands and leads to defects in chromosome synapsis. Synthetic effects with mutants of the Hop1 regulator Pch2 suggest that nucleosome binding delays a conformational switch in Hop1 from a DSB-promoting, Pch2-inaccessible state to a DSB-inactive, Pch2-accessible state to regulate the extent of meiotic DSB formation. Phylogenetic analyses of meiotic HORMADs reveal an ancient origin of the CBR, suggesting that the mechanisms we uncover are broadly conserved.


Asunto(s)
Meiosis , Proteínas de Saccharomyces cerevisiae , Nucleosomas , Microscopía por Crioelectrón , Filogenia , Saccharomyces cerevisiae/genética , ADN , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Nature ; 594(7864): 572-576, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34108687

RESUMEN

Genetic recombination arises during meiosis through the repair of DNA double-strand breaks (DSBs) that are created by Spo11, a topoisomerase-like protein1,2. Spo11 DSBs form preferentially in nucleosome-depleted regions termed hotspots3,4, yet how Spo11 engages with its DNA substrate to catalyse DNA cleavage is poorly understood. Although most recombination events are initiated by a single Spo11 cut, here we show in Saccharomyces cerevisiae that hyperlocalized, concerted Spo11 DSBs separated by 33 to more than 100 base pairs also form, which we term 'double cuts'. Notably, the lengths of double cuts vary with a periodicity of 10.5 base pairs, which is conserved in yeast and mice. This finding suggests a model in which the orientation of adjacent Spo11 molecules is fixed relative to the DNA helix-a proposal supported by the in vitro DNA-binding properties of the Spo11 core complex. Deep sequencing of meiotic progeny identifies recombination scars that are consistent with repair initiated from gaps generated by adjacent Spo11 DSBs. Collectively, these results revise our present understanding of the mechanics of Spo11-DSB formation and expand on the original concepts of gap repair during meiosis to include DNA gaps that are generated by Spo11 itself.


Asunto(s)
Roturas del ADN de Doble Cadena , Endodesoxirribonucleasas/genética , Meiosis , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Animales , Reparación del ADN , Ratones , Ratones Noqueados
3.
PLoS Genet ; 20(3): e1011140, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38427688

RESUMEN

During meiosis, genetic recombination is initiated by the formation of many DNA double-strand breaks (DSBs) catalysed by the evolutionarily conserved topoisomerase-like enzyme, Spo11, in preferred genomic sites known as hotspots. DSB formation activates the Tel1/ATM DNA damage responsive (DDR) kinase, locally inhibiting Spo11 activity in adjacent hotspots via a process known as DSB interference. Intriguingly, in S. cerevisiae, over short genomic distances (<15 kb), Spo11 activity displays characteristics of concerted activity or clustering, wherein the frequency of DSB formation in adjacent hotspots is greater than expected by chance. We have proposed that clustering is caused by a limited number of sub-chromosomal domains becoming primed for DSB formation. Here, we provide evidence that DSB clustering is abolished when meiotic prophase timing is extended via deletion of the NDT80 transcription factor. We propose that extension of meiotic prophase enables most cells, and therefore most chromosomal domains within them, to reach an equilibrium state of similar Spo11-DSB potential, reducing the impact that priming has on estimates of coincident DSB formation. Consistent with this view, when Tel1 is absent but Ndt80 is present and thus cells are able to rapidly exit meiotic prophase, genome-wide maps of Spo11-DSB formation are skewed towards pericentromeric regions and regions that load pro-DSB factors early-revealing regions of preferential priming-but this effect is abolished when NDT80 is deleted. Our work highlights how the stochastic nature of Spo11-DSB formation in individual cells within the limited temporal window of meiotic prophase can cause localised DSB clustering-a phenomenon that is exacerbated in tel1Δ cells due to the dual roles that Tel1 has in DSB interference and meiotic prophase checkpoint control.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Saccharomyces cerevisiae , ADN , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Meiosis/genética , Profase/genética , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Proc Natl Acad Sci U S A ; 121(12): e2312820121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38478689

RESUMEN

Meiotic recombination shows broad variations across species and along chromosomes and is often suppressed at and around genomic regions determining sexual compatibility such as mating type loci in fungi. Here, we show that the absence of Spo11-DSBs and meiotic recombination on Lakl0C-left, the chromosome arm containing the sex locus of the Lachancea kluyveri budding yeast, results from the absence of recruitment of the two chromosome axis proteins Red1 and Hop1, essential for proper Spo11-DSBs formation. Furthermore, cytological observation of spread pachytene meiotic chromosomes reveals that Lakl0C-left does not undergo synapsis. However, we show that the behavior of Lakl0C-left is independent of its particularly early replication timing and is not accompanied by any peculiar chromosome structure as detectable by Hi-C in this yet poorly studied yeast. Finally, we observed an accumulation of heterozygous mutations on Lakl0C-left and a sexual dimorphism of the haploid meiotic offspring, supporting a direct effect of this absence of meiotic recombination on L. kluyveri genome evolution and fitness. Because suppression of meiotic recombination on sex chromosomes is widely observed across eukaryotes, the mechanism for recombination suppression described here may apply to other species, with the potential to impact sex chromosome evolution.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Cromosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Recombinación Homóloga/genética , Meiosis/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Cell ; 144(5): 719-31, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21376234

RESUMEN

The nonrandom distribution of meiotic recombination influences patterns of inheritance and genome evolution, but chromosomal features governing this distribution are poorly understood. Formation of the DNA double-strand breaks (DSBs) that initiate recombination results in the accumulation of Spo11 protein covalently bound to small DNA fragments. By sequencing these fragments, we uncover a genome-wide DSB map of unprecedented resolution and sensitivity. We use this map to explore how DSB distribution is influenced by large-scale chromosome structures, chromatin, transcription factors, and local sequence composition. Our analysis offers mechanistic insight into DSB formation and early processing steps, supporting the view that the recombination terrain is molded by combinatorial and hierarchical interaction of factors that work on widely different size scales. This map illuminates the occurrence of DSBs in repetitive DNA elements, repair of which can lead to chromosomal rearrangements. We also discuss implications for evolutionary dynamics of recombination hot spots.


Asunto(s)
Genoma Fúngico , Saccharomyces cerevisiae/genética , Roturas del ADN de Doble Cadena , Endodesoxirribonucleasas/metabolismo , Estudio de Asociación del Genoma Completo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nature ; 582(7810): 119-123, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32494069

RESUMEN

The three-dimensional architecture of the genome governs its maintenance, expression and transmission. The cohesin protein complex organizes the genome by topologically linking distant loci, and is highly enriched in specialized chromosomal domains surrounding centromeres, called pericentromeres1-6. Here we report the three-dimensional structure of pericentromeres in budding yeast (Saccharomyces cerevisiae) and establish the relationship between genome organization and function. We find that convergent genes mark pericentromere borders and, together with core centromeres, define their structure and function by positioning cohesin. Centromeres load cohesin, and convergent genes at pericentromere borders trap it. Each side of the pericentromere is organized into a looped conformation, with border convergent genes at the base. Microtubule attachment extends a single pericentromere loop, size-limited by convergent genes at its borders. Reorienting genes at borders into a tandem configuration repositions cohesin, enlarges the pericentromere and impairs chromosome biorientation during mitosis. Thus, the linear arrangement of transcriptional units together with targeted cohesin loading shapes pericentromeres into a structure that is competent for chromosome segregation. Our results reveal the architecture of the chromosomal region within which kinetochores are embedded, as well as the restructuring caused by microtubule attachment. Furthermore, we establish a direct, causal relationship between the three-dimensional genome organization of a specific chromosomal domain and cellular function.


Asunto(s)
Centrómero/genética , Centrómero/metabolismo , Genes Fúngicos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Centrómero/química , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Genoma Fúngico/genética , Viabilidad Microbiana/genética , Mitosis/genética , Conformación Molecular , Cohesinas
7.
Nucleic Acids Res ; 51(18): 9703-9715, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37548404

RESUMEN

DNA double-strand break (DSB) repair by homologous recombination (HR) uses a DNA template with similar sequence to restore genetic identity. Allelic DNA repair templates can be found on the sister chromatid or homologous chromosome. During meiotic recombination, DSBs preferentially repair from the homologous chromosome, with a proportion of HR events generating crossovers. Nevertheless, regions of similar DNA sequence exist throughout the genome, providing potential DNA repair templates. When DSB repair occurs at these non-allelic loci (termed ectopic recombination), chromosomal duplications, deletions and rearrangements can arise. Here, we characterize in detail ectopic recombination arising between a dispersed pair of inverted repeats in wild-type Saccharomyces cerevisiae at both a local and a chromosomal scale-the latter identified via gross chromosomal acentric and dicentric chromosome rearrangements. Mutation of the DNA damage checkpoint clamp loader Rad24 and the RecQ helicase Sgs1 causes an increase in ectopic recombination. Unexpectedly, additional mutation of the RecA orthologues Rad51 and Dmc1 alters-but does not abolish-the type of ectopic recombinants generated, revealing a novel class of inverted chromosomal rearrangement driven by the single-strand annealing pathway. These data provide important insights into the role of key DNA repair proteins in regulating DNA repair pathway and template choice during meiosis.


Asunto(s)
Reparación del ADN , Meiosis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Proteínas de Ciclo Celular/metabolismo , Aberraciones Cromosómicas , ADN/metabolismo , Roturas del ADN de Doble Cadena , Recombinasas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Mol Cell ; 53(1): 7-18, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24316220

RESUMEN

MRE11 within the MRE11-RAD50-NBS1 (MRN) complex acts in DNA double-strand break repair (DSBR), detection, and signaling; yet, how its endo- and exonuclease activities regulate DSBR by nonhomologous end-joining (NHEJ) versus homologous recombination (HR) remains enigmatic. Here, we employed structure-based design with a focused chemical library to discover specific MRE11 endo- or exonuclease inhibitors. With these inhibitors, we examined repair pathway choice at DSBs generated in G2 following radiation exposure. While nuclease inhibition impairs radiation-induced replication protein A (RPA) chromatin binding, suggesting diminished resection, the inhibitors surprisingly direct different repair outcomes. Endonuclease inhibition promotes NHEJ in lieu of HR, while exonuclease inhibition confers a repair defect. Collectively, the results describe nuclease-specific MRE11 inhibitors, define distinct nuclease roles in DSB repair, and support a mechanism whereby MRE11 endonuclease initiates resection, thereby licensing HR followed by MRE11 exonuclease and EXO1/BLM bidirectional resection toward and away from the DNA end, which commits to HR.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Inhibidores Enzimáticos/química , Fase G2 , Reparación del ADN por Recombinación , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Rayos gamma/efectos adversos , Humanos , Proteína Homóloga de MRE11 , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo
9.
BMC Biol ; 19(1): 247, 2021 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-34801008

RESUMEN

BACKGROUND: The main function of telomerase is at the telomeres but under adverse conditions telomerase can bind to internal regions causing deleterious effects as observed in cancer cells. RESULTS: By mapping the global occupancy of the catalytic subunit of telomerase (Est2) in the budding yeast Saccharomyces cerevisiae, we reveal that it binds to multiple guanine-rich genomic loci, which we termed "non-telomeric binding sites" (NTBS). We characterize Est2 binding to NTBS. Contrary to telomeres, Est2 binds to NTBS in G1 and G2 phase independently of Est1 and Est3. The absence of Est1 and Est3 renders telomerase inactive at NTBS. However, upon global DNA damage, Est1 and Est3 join Est2 at NTBS and telomere addition can be observed indicating that Est2 occupancy marks NTBS regions as particular risks for genome stability. CONCLUSIONS: Our results provide a novel model of telomerase regulation in the cell cycle using internal regions as "parking spots" of Est2 but marking them as hotspots for telomere addition.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Telomerasa , Daño del ADN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética
10.
Nature ; 520(7545): 114-8, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25539084

RESUMEN

Meiotic recombination is a critical step in gametogenesis for many organisms, enabling the creation of genetically diverse haploid gametes. In each meiotic cell, recombination is initiated by numerous DNA double-strand breaks (DSBs) created by Spo11, the evolutionarily conserved topoisomerase-like protein, but how these DSBs are distributed relatively uniformly across the four chromatids that make up each chromosome pair is poorly understood. Here we employ Saccharomyces cerevisiae to demonstrate distance-dependent DSB interference in cis (in which the occurrence of a DSB suppresses adjacent DSB formation)--a process that is mediated by the conserved DNA damage response kinase, Tel1(ATM). The inhibitory function of Tel1 acts on a relatively local scale, while over large distances DSBs have a tendency to form independently of one another even in the presence of Tel1. Notably, over very short distances, loss of Tel1 activity causes DSBs to cluster within discrete zones of concerted DSB activity. Our observations support a hierarchical view of recombination initiation where Tel1(ATM) prevents clusters of DSBs, and further suppresses DSBs within the surrounding chromosomal region. Such collective negative regulation will help to ensure that recombination events are dispersed evenly and arranged optimally for genetic exchange and efficient chromosome segregation.


Asunto(s)
Roturas del ADN de Doble Cadena , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Meiosis/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , 3-Isopropilmalato Deshidrogenasa/genética , Oxidorreductasas de Alcohol/genética , Aminohidrolasas/genética , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromosomas Fúngicos/genética , Endodesoxirribonucleasas/antagonistas & inhibidores , Endodesoxirribonucleasas/metabolismo , Genes Fúngicos/genética , Recombinación Homóloga/genética , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Pirofosfatasas/genética , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética
12.
Nature ; 479(7372): 241-4, 2011 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-22002605

RESUMEN

Repair of DNA double-strand breaks (DSBs) by homologous recombination requires resection of 5'-termini to generate 3'-single-strand DNA tails. Key components of this reaction are exonuclease 1 and the bifunctional endo/exonuclease, Mre11 (refs 2-4). Mre11 endonuclease activity is critical when DSB termini are blocked by bound protein--such as by the DNA end-joining complex, topoisomerases or the meiotic transesterase Spo11 (refs 7-13)--but a specific function for the Mre11 3'-5' exonuclease activity has remained elusive. Here we use Saccharomyces cerevisiae to reveal a role for the Mre11 exonuclease during the resection of Spo11-linked 5'-DNA termini in vivo. We show that the residual resection observed in Exo1-mutant cells is dependent on Mre11, and that both exonuclease activities are required for efficient DSB repair. Previous work has indicated that resection traverses unidirectionally. Using a combination of physical assays for 5'-end processing, our results indicate an alternative mechanism involving bidirectional resection. First, Mre11 nicks the strand to be resected up to 300 nucleotides from the 5'-terminus of the DSB--much further away than previously assumed. Second, this nick enables resection in a bidirectional manner, using Exo1 in the 5'-3' direction away from the DSB, and Mre11 in the 3'-5' direction towards the DSB end. Mre11 exonuclease activity also confers resistance to DNA damage in cycling cells, suggesting that Mre11-catalysed resection may be a general feature of various DNA repair pathways.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Biocatálisis , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/deficiencia , Exodesoxirribonucleasas/genética , Meiosis , Modelos Biológicos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética
13.
Mol Cell ; 33(1): 117-23, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19150433

RESUMEN

For a cancer cell to resist treatment with drugs that trap topoisomerases covalently on the DNA, the topoisomerase must be removed. In this study, we provide evidence that the Schizosaccharomyces pombe Rad32(Mre11) nuclease activity is involved in the removal of both Top2 from 5' DNA ends as well as Top1 from 3' ends in vivo. A ctp1(CtIP) deletion is defective for Top2 removal but overproficient for Top1 removal, suggesting that Ctp1(CtIP) plays distinct roles in removing topoisomerases from 5' and 3' DNA ends. Analysis of separation of function mutants suggests that MRN-dependent topoisomerase removal contributes significantly to resistance against topoisomerase-trapping drugs. This study has important implications for our understanding of the role of the MRN complex and CtIP in resistance of cells to a clinically important group of anticancer drugs.


Asunto(s)
ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Camptotecina/farmacología , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/enzimología , Nucléolo Celular/efectos de la radiación , Etopósido/análogos & derivados , Etopósido/farmacología , Rayos gamma , Metilmetanosulfonato/farmacología , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica/efectos de los fármacos , Schizosaccharomyces/citología , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/efectos de la radiación
14.
Exp Cell Res ; 329(1): 124-31, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25116420

RESUMEN

Ataxia-telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction of numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Roturas del ADN de Doble Cadena , Homeostasis/fisiología , Meiosis/fisiología , Animales , Ciclo Celular/fisiología , Humanos
15.
Nature ; 442(7099): 153-8, 2006 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-16838012

RESUMEN

During meiosis, accurate separation of maternal and paternal chromosomes requires that they first be connected to one another through homologous recombination. Meiotic recombination has many intriguing but poorly understood features that distinguish it from recombination in mitotically dividing cells, and several of these features depend on the meiosis-specific DNA strand exchange protein Dmc1 (disrupted meiotic cDNA1). Many questions about this protein have arisen since its discovery more than a decade ago, but recent genetic and biochemical breakthroughs promise to shed light on the unique behaviours and functions of this central player in the remarkable chromosome dynamics of meiosis.


Asunto(s)
Intercambio Genético/fisiología , ADN/metabolismo , Meiosis/genética , Adenosina Trifosfatasas/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Intercambio Genético/genética , ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Modelos Genéticos , Homología de Secuencia de Ácido Nucleico
16.
Nucleic Acids Res ; 38(13): 4349-60, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20223769

RESUMEN

During meiosis there is an imperative to create sufficient crossovers for homologue segregation. This can be achieved during repair of programmed DNA double-strand breaks (DSBs), which are biased towards using a homologue rather than sister chromatid as a repair template. Various proteins contribute to this bias, one of which is a meiosis specific kinase Mek1. It has been proposed that Mek1 establishes the bias by creating a barrier to sister chromatid repair, as distinct from enforcing strand invasion with the homologue. We looked for evidence that Mek1 positively stimulates strand invasion of the homologue. This was done by analysing repair of DSBs induced by the VMA1-derived endonuclease (VDE) and flanked by directly repeated sequences that can be used for intrachromatid single-strand annealing (SSA). SSA competes with interhomologue strand invasion significantly more successfully when Mek1 function is lost. We suggest the increase in intrachromosomal SSA reflects an opportunistic default repair pathway due to loss of a MEK1 stimulated bias for strand invasion of the homologous chromosome. Making use of an inhibitor sensitive mek1-as1 allele, we found that Mek1 function influences the repair pathway throughout the first4-5 h of meiosis. Perhaps reflecting a particular need to create bias for successful interhomologue events before chromosome pairing is complete.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , MAP Quinasa Quinasa 1/metabolismo , Conversión Génica , MAP Quinasa Quinasa 1/genética , Meiosis , Mutación , ATPasas de Translocación de Protón/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/enzimología
17.
Nature ; 436(7053): 1053-7, 2005 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-16107854

RESUMEN

DNA double-strand breaks (DSBs) with protein covalently attached to 5' strand termini are formed by Spo11 to initiate meiotic recombination. The Spo11 protein must be removed for the DSB to be repaired, but the mechanism for removal is unclear. Here we show that meiotic DSBs in budding yeast are processed by endonucleolytic cleavage that releases Spo11 attached to an oligonucleotide with a free 3'-OH. Two discrete Spo11-oligonucleotide complexes were found in equal amounts, differing with respect to the length of the bound DNA. We propose that these forms arise from different spacings of strand cleavages flanking the DSB, with every DSB processed asymmetrically. Thus, the ends of a single DSB may be biochemically distinct at or before the initial processing step-much earlier than previously thought. SPO11-oligonucleotide complexes were identified in extracts of mouse testis, indicating that this mechanism is evolutionarily conserved. Oligonucleotide-topoisomerase II complexes were also present in extracts of vegetative yeast, although not subject to the same genetic control as for generating Spo11-oligonucleotide complexes. Our findings suggest a general mechanism for repair of protein-linked DSBs.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/metabolismo , ADN/genética , ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Esterasas/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN/química , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Endonucleasas , Esterasas/deficiencia , Esterasas/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Masculino , Meiosis , Ratones , Proteínas Nucleares , Proteínas de Unión a Fosfato , Recombinación Genética/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Testículo/citología , Testículo/metabolismo
18.
Biol Rev Camb Philos Soc ; 96(3): 822-841, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33615674

RESUMEN

The separation of germ cell populations from the soma is part of the evolutionary transition to multicellularity. Only genetic information present in the germ cells will be inherited by future generations, and any molecular processes affecting the germline genome are therefore likely to be passed on. Despite its prevalence across taxonomic kingdoms, we are only starting to understand details of the underlying micro-evolutionary processes occurring at the germline genome level. These include segregation, recombination, mutation and selection and can occur at any stage during germline differentiation and mitotic germline proliferation to meiosis and post-meiotic gamete maturation. Selection acting on germ cells at any stage from the diploid germ cell to the haploid gametes may cause significant deviations from Mendelian inheritance and may be more widespread than previously assumed. The mechanisms that affect and potentially alter the genomic sequence and allele frequencies in the germline are pivotal to our understanding of heritability. With the rise of new sequencing technologies, we are now able to address some of these unanswered questions. In this review, we comment on the most recent developments in this field and identify current gaps in our knowledge.


Asunto(s)
Células Germinativas , Meiosis , Evolución Biológica , Genoma , Meiosis/genética , Mutación
19.
PLoS Genet ; 3(11): e223, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18081428

RESUMEN

During meiosis, self-inflicted DNA double-strand breaks (DSBs) are created by the protein Spo11 and repaired by homologous recombination leading to gene conversions and crossovers. Crossover formation is vital for the segregation of homologous chromosomes during the first meiotic division and requires the RecA orthologue, Dmc1. We analyzed repair during meiosis of site-specific DSBs created by another nuclease, VMA1-derived endonuclease (VDE), in cells lacking Dmc1 strand-exchange protein. Turnover and resection of the VDE-DSBs was assessed in two different reporter cassettes that can repair using flanking direct repeat sequences, thereby obviating the need for a Dmc1-dependent DNA strand invasion step. Access of the single-strand binding complex replication protein A, which is normally used in all modes of DSB repair, was checked in chromatin immunoprecipitation experiments, using antibody against Rfa1. Repair of the VDE-DSBs was severely inhibited in dmc1Delta cells, a defect that was associated with a reduction in the long tract resection required to initiate single-strand annealing between the flanking repeat sequences. Mutants that either reduce Spo11-DSB formation or abolish resection at Spo11-DSBs rescued the repair block. We also found that a replication protein A component, Rfa1, does not accumulate to expected levels at unrepaired single-stranded DNA (ssDNA) in dmc1Delta cells. The requirement of Dmc1 for VDE-DSB repair using flanking repeats appears to be caused by the accumulation of large quantities of ssDNA that accumulate at Spo11-DSBs when Dmc1 is absent. We propose that these resected DSBs sequester both resection machinery and ssDNA binding proteins, which in wild-type cells would normally be recycled as Spo11-DSBs repair. The implication is that repair proteins are in limited supply, and this could reflect an underlying mechanism for regulating DSB repair in wild-type cells, providing protection from potentially harmful effects of overabundant repair proteins.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN de Hongos/metabolismo , ADN de Cadena Simple/metabolismo , Meiosis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Southern Blotting , Cromátides/metabolismo , Inmunoprecipitación de Cromatina , Genes Reporteros , Mutación , Secuencias Repetitivas de Ácidos Nucleicos , Proteína de Replicación A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Methods Mol Biol ; 557: 183-95, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19799183

RESUMEN

During meiosis Spo11 catalyzes the formation of DNA double-strand breaks, becoming covalently attached to the 5' ends on both sides of the break during this process. Spo11 is removed from the DSB by single-stranded endonucleolytic cleavage flanking the DSB, liberating a short-lived species consisting of Spo11 protein covalently linked to a short oligonucleotide. The method presented here details how to detect these Spo11-oligo complexes in extracts made from meiotic yeast cells.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN-Topoisomerasas de Tipo II/metabolismo , Etiquetado Corte-Fin in Situ/métodos , Sustancias Macromoleculares/análisis , Oligonucleótidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Algoritmos , ADN-Topoisomerasas de Tipo II/análisis , Endodesoxirribonucleasas , Sustancias Macromoleculares/metabolismo , Modelos Biológicos , Oligonucleótidos/análisis , Unión Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA