Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
EMBO Rep ; 24(9): e57413, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37470283

RESUMEN

Aneuploidy is generally considered harmful, but in some microorganisms, it can act as an adaptive mechanism against environmental stress. Here, we use Leishmania-a protozoan parasite with remarkable genome plasticity-to study the early steps of aneuploidy evolution under high drug pressure (using antimony or miltefosine as stressors). By combining single-cell genomics, lineage tracing with cellular barcodes, and longitudinal genome characterization, we reveal that aneuploidy changes under antimony pressure result from polyclonal selection of pre-existing karyotypes, complemented by further and rapid de novo alterations in chromosome copy number along evolution. In the case of miltefosine, early parasite adaptation is associated with independent point mutations in a miltefosine transporter gene, while aneuploidy changes only emerge later, upon exposure to increased drug levels. Therefore, polyclonality and genome plasticity are hallmarks of parasite adaptation, but the scenario of aneuploidy dynamics depends on the nature and strength of the environmental stress as well as on the existence of other pre-adaptive mechanisms.


Asunto(s)
Leishmania , Humanos , Leishmania/genética , Antimonio , Cromosomas , Aneuploidia
2.
Nucleic Acids Res ; 50(1): 293-305, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34893872

RESUMEN

Leishmania, a unicellular eukaryotic parasite, is a unique model for aneuploidy and cellular heterogeneity, along with their potential role in adaptation to environmental stresses. Somy variation within clonal populations was previously explored in a small subset of chromosomes using fluorescence hybridization methods. This phenomenon, termed mosaic aneuploidy (MA), might have important evolutionary and functional implications but remains under-explored due to technological limitations. Here, we applied and validated a high throughput single-cell genome sequencing method to study for the first time the extent and dynamics of whole karyotype heterogeneity in two clonal populations of Leishmania promastigotes representing different stages of MA evolution in vitro. We found that drastic changes in karyotypes quickly emerge in a population stemming from an almost euploid founder cell. This possibly involves polyploidization/hybridization at an early stage of population expansion, followed by assorted ploidy reduction. During further stages of expansion, MA increases by moderate and gradual karyotypic alterations, affecting a defined subset of chromosomes. Our data provide the first complete characterization of MA in Leishmania and pave the way for further functional studies.


Asunto(s)
Aneuploidia , Evolución Molecular , Leishmania donovani/genética , Mosaicismo , Análisis de la Célula Individual/métodos , Secuenciación Completa del Genoma/métodos , Genoma de Protozoos
3.
mBio ; 13(1): e0326421, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35012338

RESUMEN

The implementation of prospective drug resistance (DR) studies in the research-and-development (R&D) pipeline is a common practice for many infectious diseases but not for neglected tropical diseases (NTDs). Here, we explored and demonstrated the importance of this approach using as paradigms Leishmania donovani, the etiological agent of visceral leishmaniasis (VL), and TCMDC-143345, a promising compound of the GlaxoSmithKline (GSK) "Leishbox" to treat VL. We experimentally selected resistance to TCMDC-143345 in vitro and characterized resistant parasites at the genomic and phenotypic levels. We found that it took more time to develop resistance to TCMDC-143345 than to other drugs in clinical use and that there was no cross-resistance to these drugs, suggesting a new and unique mechanism. By whole-genome sequencing, we found two mutations in the gene encoding the L. donovani dynamin-1-like protein (LdoDLP1) that were fixed at the highest drug pressure. Through phylogenetic analysis, we identified LdoDLP1 as a family member of the dynamin-related proteins, a group of proteins that impacts the shapes of biological membranes by mediating fusion and fission events, with a putative role in mitochondrial fission. We found that L. donovani lines genetically engineered to harbor the two identified LdoDLP1 mutations were resistant to TCMDC-143345 and displayed altered mitochondrial properties. By homology modeling, we showed how the two LdoDLP1 mutations may influence protein structure and function. Taken together, our data reveal a clear involvement of LdoDLP1 in the adaptation/reduced susceptibility of L. donovani to TCMDC-143345. IMPORTANCE Humans and their pathogens are continuously locked in a molecular arms race during which the eventual emergence of pathogen drug resistance (DR) seems inevitable. For neglected tropical diseases (NTDs), DR is generally studied retrospectively once it has already been established in clinical settings. We previously recommended to keep one step ahead in the host-pathogen arms race and implement prospective DR studies in the R&D pipeline, a common practice for many infectious diseases but not for NTDs. Here, using Leishmania donovani, the etiological agent of visceral leishmaniasis (VL), and TCMDC-143345, a promising compound of the GSK Leishbox to treat VL, as paradigms, we experimentally selected resistance to the compound and proceeded to genomic and phenotypic characterization of DR parasites. The results gathered in the present study suggest a new DR mechanism involving the L. donovani dynamin-1-like protein (LdoDLP1) and demonstrate the practical relevance of prospective DR studies.


Asunto(s)
Antiprotozoarios , Resistencia a Medicamentos , Dinamina I , Leishmania donovani , Leishmaniasis Visceral , Humanos , Antiprotozoarios/inmunología , Dinamina I/genética , Dinamina I/inmunología , Genómica , Leishmania donovani/genética , Leishmania donovani/inmunología , Leishmania donovani/parasitología , Leishmaniasis Visceral/genética , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Filogenia , Estudios Retrospectivos , Resistencia a Medicamentos/genética , Resistencia a Medicamentos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA