Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Anim Ecol ; 89(8): 1775-1787, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32358787

RESUMEN

Tree diversity exerts a strong influence on consumer communities, but most work has involved single time point measurements over short time periods. Describing temporal variation associated with diversity effects over longer time periods is necessary to fully understand the effects of tree diversity on ecological function. We conducted a year-long study in an experimental system in southern Mexico assessing the effects of tree diversity on the abundance and diversity of foraging birds. To this end, we recorded bird visitation patterns in 32 tree plots (21 × 21 m; 12 tree species monocultures, 20 four-species polycultures) every 45 days (n = 8 surveys) and for each plot estimated bird abundance, richness, functional diversity (FD) and phylogenetic diversity (PD). In each case, we reported temporal (intra-annual) variation in the magnitude of tree diversity effects, and calculated the temporal stability of these bird responses. Across surveys, tree diversity noticeably affected bird responses, demonstrated by significantly higher abundance (43%), richness (32%), PD (25%) and FD (25%) of birds visiting polyculture plots compared to monoculture plots, as well as a distinct species composition between plot types. We also found intra-annual variation in tree diversity effects on these response variables, ranging from surveys for which the diversity effect was not significant to surveys where a significant 80% increase (e.g. for bird FD and PD) was observed in polyculture relative to monoculture plots. Notably, tree diversity increased the stability of all bird responses, with polycultures having a greater stability abundance (18%), richness (38%), PD (32%), and FD (35%) of birds visiting tree species polycultures compared to monocultures. These results show that tree diversity not only increases bird visitation to plots, but also stabilizes bird habitat usage over time in ways that could implicate insurance-related mechanisms. Such findings are highly relevant for understanding the long-term effects of plant diversity on vertebrates and the persistence of bird-related ecosystem functions. More work is needed to unveil the ecological mechanisms behind temporal variation in vertebrate responses to tree diversity and their consequences for community structure and function.


Asunto(s)
Ecosistema , Bosques , Animales , Biodiversidad , Aves , México , Filogenia
2.
Proc Biol Sci ; 285(1890)2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30404881

RESUMEN

Biodiversity affects the structure of ecological communities, but little is known about the interactive effects of diversity across multiple trophic levels. We used a large-scale forest diversity experiment to investigate the effects of tropical tree species richness on insectivorous birds, and the subsequent indirect effect on predation rates by birds. Diverse plots (four tree species) had higher bird abundance (61%), phylogenetic diversity (61%), and functional diversity (55%) than predicted based on single-species monocultures, which corresponded to higher attack rates on artificial caterpillars (65%). Tree diversity effects on attack rate were driven by complementarity among tree species, with increases in attack rate observed on all tree species in polycultures. Attack rates on artificial caterpillars were higher in plots with higher bird abundance and diversity, but the indirect effect of tree species richness was mediated by bird diversity, providing evidence that diversity can interact across trophic levels with consequences tied to ecosystem services and function.


Asunto(s)
Biodiversidad , Aves/fisiología , Conducta Alimentaria , Conducta Predatoria , Árboles/fisiología , Clima Tropical , Animales , Bosques , México
3.
New Phytol ; 220(3): 703-713, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-27597176

RESUMEN

It is well known that plant damage by leaf-chewing herbivores can induce resistance in neighbouring plants. It is unknown whether such communication occurs in response to sap-feeding herbivores, whether communication is specific to herbivore identity, and the chemical basis of communication, including specificity. We carried out glasshouse experiments using the California-native shrub Baccharis salicifolia and two ecologically distinct aphid species (one a dietary generalist and the other a specialist) to test for specificity of plant-plant communication and to document the underlying volatile organic compounds (VOCs). We show specificity of plant-plant communication to herbivore identity, as each aphid-damaged plant only induced resistance in neighbours against the same aphid species. The amount and composition of induced VOCs were markedly different between plants attacked by the two aphid species, providing a putative chemical mechanism for this specificity. Furthermore, a synthetic blend of the five major aphid-induced VOCs (ethanone, limonene, methyl salicylate, myrcene, ocimene) triggered resistance in receiving plants of comparable magnitude to aphid damage of neighbours, and the effects of the blend exceeded those of individual compounds. This study significantly advances our understanding of plant-plant communication by demonstrating the importance of sap-feeding herbivores and herbivore identity, as well as the chemical basis for such effects.


Asunto(s)
Baccharis/parasitología , Herbivoria/fisiología , Especificidad del Huésped , Animales , Áfidos/fisiología , Compuestos Orgánicos Volátiles/metabolismo
4.
Ecology ; 99(12): 2731-2739, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30508249

RESUMEN

Plants are able to adjust their anti-herbivore defenses in response to the volatile organic compounds (VOCs) emitted by herbivore-damaged neighbors, and some of these changes increase resistance against subsequent herbivory. This phenomenon of plant-plant communication is thought to be widespread, but recent investigations have cautioned that it can be context dependent, including variation in the strength of communication based on the identity of plants and their associated herbivores. Here, we performed three greenhouse experiments using multiple male and female genotypes of the dioecious woody shrub Baccharis salicifolia and its specialist aphid Uroleucon macolai to test for specificity of plant-plant communication with respect to plant sex and genotype. Moreover, we evaluated plant sexual dimorphism and genotypic variation in VOC emissions (i.e., the "speaking" side of the interaction) and response of plants to VOC exposure (i.e., the "listening" side of the interaction) in order to identify the chemical mechanisms underlying such specificity. We did not find genotypic specificity of communication; emitter plants damaged by U. macolai significantly reduced subsequent U. macolai performance on receivers, but these effects were indistinguishable for communication within vs. among genotypes. In contrast, we found sex specificity of communication; male emitter plants reduced subsequent U. macolai performance on male and female receiver plants equally, while female emitter plants only did so for female receivers. We found sexual (but not genotypic) dimorphism in speaking but not listening; of the seven compounds induced by U. macolai feeding (speaking), pinocarvone was approximately fivefold greater in female than in male plants, while exposure of plants to pinocarvone emissions (listening) reduced U. macolai performance equally in both male and female plants. Together, our study demonstrates novel evidence for sexually dimorphic specificity of plant-plant communication and the chemical mechanism underlying this effect.


Asunto(s)
Áfidos , Baccharis , Compuestos Orgánicos Volátiles , Animales , Femenino , Genotipo , Herbivoria , Masculino , Plantas
5.
Oecologia ; 187(2): 389-400, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29354878

RESUMEN

Intraspecific plant trait variation can have cascading effects on plant-associated biotic communities. Sexual dimorphism is an important axis of genetic variation in dioecious plants, but the strength of such effects and the underlying mechanisms relative to genetic variation are unknown. We established a common garden with 39 genotypes of Baccharis salicifolia sampled from a single population that included male and female genotypes and measured plant traits and quantified associated arthropod communities. Genetic variation sensu lato (genotypic variation) had strong effects on most plant traits (flower number, relative growth rate, specific leaf area, percent water content, carbon-nitrogen ratio, monoterpene but not sesquiterpene concentrations) and on herbivore and predator density, and on arthropod community composition (relative abundance of 14 orders). In contrast, sexual dimorphism had weaker effects on only a few plant traits (flower number and relative growth rate), on predator density, and on arthropod community composition, but had no effect on herbivore density. Variation in flower number drove genetic variation sensu lato and sex dimorphism in predator density and arthropod community composition. There was unique genetic variation sensu lato in herbivore density (positively) associated with monoterpene concentration and in arthropod community composition associated with specific leaf area and carbon-nitrogen ratio. There was unique sexual dimorphism in arthropod community composition associated with plant relative growth rate. Together, these results demonstrate that genetic variation sensu lato and sexual dimorphism can shape plant-associated arthropod communities via both parallel and unique mechanisms, with greater overall effects of the former.


Asunto(s)
Artrópodos , Animales , Femenino , Variación Genética , Herbivoria , Masculino , Plantas , Caracteres Sexuales
6.
Ecology ; 100(10): e02853, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31351007

RESUMEN

Direct and indirect defenses are predicted to trade-off due to costs associated with redundancy in plant defense, but the factors mediating a plant's position along this trade-off axis are unknown. We conducted a bird exclusion experiment of nine sympatric shrub species to assess convergent associations among direct defense, indirect defense from birds, and shrub structural complexity, a trait predicted to influence bird foraging. We found high variation in defense; direct resistance varied four-fold, with indirect defense ranging from a 59% reduction to a 32% increase in herbivore density. These resistance strategies traded off and were mediated by plant structure; high complexity was associated with weaker indirect defense from birds, strong direct defense, and more predatory arthropods. Our findings suggest that species with growth forms that inhibit bird foraging invest more in direct defense and may provide refuge for arthropod predators. Accordingly, we provide evidence for a potentially widespread mechanism underlying the evolution of plant defenses.


Asunto(s)
Artrópodos , Aves , Animales , Herbivoria , Plantas
7.
Sci Rep ; 9(1): 14655, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31602001

RESUMEN

Terpenoids are secondary metabolites produced in most plant tissues and are often considered toxic or repellent to plant enemies. Previous work has typically reported on intra-specific variation in terpene profiles, but the effects of plant sex, an important axis of genetic variation, have been less studied for chemical defences in general, and terpenes in particular. In a prior study, we found strong genetic variation (but not sexual dimorphism) in terpene amounts in leaves of the dioecious shrub Baccharis salicifolia. Here we build on these findings and provide a more in-depth analysis of terpene chemistry on these same plants from an experiment consisting of a common garden with male (N = 19) and female (N = 20) genotypes sourced from a single population. Our goal in the present study was to investigate quantitative and qualitative differences in terpene profiles associated with plant sex and genotypic variation. For this, we quantified leaf mono- and sesquiterpene amount, richness, and diversity (quantitative profile), as well as the composition of compounds (qualitative profile). We found no evidence of sexual dimorphism in monoterpene or sesquiterpene profiles. We did, however, find significant genotypic variation in amount, diversity, and composition of monoterpenes, but no effects on sesquiterpenes. These findings indicated that genotypic variation in terpene profiles largely surpassed variation due to sexual dimorphism for the studied population of this species.


Asunto(s)
Baccharis/metabolismo , Monoterpenos/análisis , Sesquiterpenos/análisis , Baccharis/química , Baccharis/genética , Variación Genética , Técnicas de Genotipaje , Monoterpenos/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Sesquiterpenos/metabolismo
8.
Science ; 356(6339): 742-744, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28522532

RESUMEN

Biotic interactions underlie ecosystem structure and function, but predicting interaction outcomes is difficult. We tested the hypothesis that biotic interaction strength increases toward the equator, using a global experiment with model caterpillars to measure predation risk. Across an 11,660-kilometer latitudinal gradient spanning six continents, we found increasing predation toward the equator, with a parallel pattern of increasing predation toward lower elevations. Patterns across both latitude and elevation were driven by arthropod predators, with no systematic trend in attack rates by birds or mammals. These matching gradients at global and regional scales suggest consistent drivers of biotic interaction strength, a finding that needs to be integrated into general theories of herbivory, community organization, and life-history evolution.


Asunto(s)
Altitud , Biodiversidad , Cadena Alimentaria , Geografía , Insectos , Larva , Conducta Predatoria , Animales , Artrópodos/fisiología , Aves/fisiología , Herbivoria , Mamíferos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA