Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(7): 673, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940993

RESUMEN

The emerging alien cactus Cylindropuntia pallida (Rose) F.M. Knuth originates from northern Mexico and introduced into South Africa in 1940s as an ornamental plant.  Multiple populations of C. pallida have been detected in various areas of South Africa. C. pallida has effective propagule dispersal and rapid recruitment making it a likely key future invader, and thus, is a target for eradication in South Africa. To eradicate C. pallida populations, a foliar spray (i.e. using a 2% concentration of herbicide with fluroxypyr and triclopyr) has been applied to plants in nine populations, with population sizes ranging between 535 and 2701 plants and populations covering areas of 100 -1000 ha. The aims of the study were to investigate the efficacy of the foliar spray method used to eradicate C. pallida; to investigate the impacts of C. pallida invasions on native vegetation integrity; to apply species distribution models (SDMs) to identify suitable climates for C. pallida in South Africa; and to document the biomes vulnerable to the negative impact of C. pallida in South Africa. Results show that foliar spray killed many C. pallida plants (mean percentage of dead plants ± SE, 83.3 ± 6.4; n = 9; range, 70-96%), with adult plants taking about 2 months to die completely. The efficacy of the herbicide was not affected by plant size or the concentration of the herbicide used. The invaded site had significantly greater vegetation cover which persisted across winter compared to the uninvaded site, but the latter site's vegetation cover significantly dropped in winter. Also, the invaded site had lower plant species diversity than the uninvaded site and was dominated by species in the Poaceae and Asteraceae plant families. Additionally, a normalised difference vegetation index (NDVI) analysis shows that the uninvaded site has higher vegetation cover and health than the invaded site wherein a notable decline in vegetation health was observed between 2019 and 2022. A large area (> 15 million hectares) was predicted to be suitable for invasion by C. pallida in provinces with arid and warm temperate climates - the fynbos and grassland biomes are the most vulnerable. Because of the observed negative impacts, high environmental compatibility, and high cost of clearing large infestations, we advocate for considering the biocontrol method for effectively managing C. pallida invasion in South Africa.


Asunto(s)
Cactaceae , Herbicidas , Especies Introducidas , Sudáfrica , Monitoreo del Ambiente
2.
Plants (Basel) ; 13(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38592858

RESUMEN

Preserving the dwindling native biodiversity in urban settings poses escalating challenges due to the confinement of remaining natural areas to isolated and diminutive patches. Remarkably scarce research has scrutinised the involvement of institutions, particularly universities, in introducing alien plant species in South Africa, thus creating a significant gap in effective monitoring and management. In this study, the Tshwane University of Technology in Tshwane Metropole, South Africa serves as a focal point, where we conducted a comprehensive survey of alien plants both within the university premises and beyond its confines. The investigation involved the classification of invasion status and a meticulous assessment of donor and recipient dynamics. Our findings encompass 876 occurrence records, revealing the presence of 94 alien plant species spanning 44 distinct families. Noteworthy occurrences among the dominant plant families are Asteraceae and Solanaceae. Herbaceous and woody plants emerged as the most prevalent alien species, with common representation across both sampling sites. A substantial majority of recorded species were initially introduced for horticultural purposes (51%) before escaping and establishing self-sustaining populations (62%). Furthermore, 43 species identified are listed in South African invasive species legislation, with some manifesting invasive tendencies and altering the distribution of native species in the remaining natural areas. The notable overlap in species observed between the university premises and adjacent areas provides crucial insights into the influence of institutions on the dynamics of plant invasions within the urban landscape. This underscores the prevailing gaps in the management of invasive alien plants in urban zones and accentuates the imperative of an integrated approach involving collaboration between municipalities and diverse institutions for effective invasive species management in urban environments.

3.
Biology (Basel) ; 13(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39056678

RESUMEN

The global trade of non-native pet birds has increased in recent decades, and this has accelerated the introduction of invasive birds in the wild. This study employed ensemble species distribution modelling (eSDM) to assess potential habitat suitability and environmental predictor variables influencing the potential distribution of non-native pet bird species reported lost and sighted in South Africa. We used data and information on lost and found pet birds from previous studies to establish and describe scenarios of how pet birds may transition from captivity to the wild. Our study revealed that models fitted and performed well in predicting the suitability for African grey (Psittacus erithacus), Budgerigar (Melopsittacus undulatus), Cockatiel (Nymphicus hollandicus), Green-cheeked conure (Pyrrhura molinae), Monk parakeet (Myiopsitta monachus), and Rose-ringed parakeet (Psittacula krameri), with the mean weighted AUC and TSS values greater than 0.765. The predicted habitat suitability differed among species, with the suitability threshold indicating that between 61% and 87% of areas were predicted as suitable. Species with greater suitability included the African grey, Cockatiel, and Rose-ringed parakeet, which demonstrated significant overlap between their habitat suitability and reported lost cases. Human footprint, bioclimatic variables, and vegetation indices largely influenced predictive habitat suitability. The pathway scenario showed the key mechanisms driving the transition of pet birds from captivity to the wild, including the role of pet owners, animal rescues, adoption practices, and environmental suitability. Our study found that urban landscapes, which are heavily populated, are at high risk of potential invasion by pet birds. Thus, implementing a thorough surveillance survey is crucial for monitoring and evaluating the establishment potential of pet species not yet reported in the wild.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA