Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 60(16): 11915-11922, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34324327

RESUMEN

Turn-on time is a key factor for lighting devices to be of practical application. To decrease the turn-on time value of a deep-red light-emitting electrochemical cells (DR-LECs), two novel approaches based on molecularly engineered ruthenium phenanthroimidazole complexes were introduced. First, we found that with the incorporation of ionic methylpyridinium group to phenanthroimidazole ligand, the turn-on time of the DR-LECs device was dramatically reduced, from 79 to 27 s. By complexation of ruthenium emitter with Ag+, the turn-on time was improved by 85%, and the EQE of DR-device was increased from 0.62 to 0.71%. These results open a new avenue in decreasing the turn-on time without adding ionic electrolytes, leading to an efficient LEC.

2.
Sci Rep ; 13(1): 2287, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759714

RESUMEN

Light-emitting electrochemical cells (LECs) based on Ir(III) complexes owing to the superior advantages exhibit high potential for display and lighting applications. Herein, a series of Ir(III) complexes based on phenanthroimidazole (PI) as an ancillary ligand were synthesized to achieve efficient and highly stable yellow-to-orange LEC devices with fast response. These complexes exhibit appropriate electrochemical stability and significant suppression of concentration quenching in the thin films compared to the archetype complex. The fabricated LECs showed remarkably long device lifetimes over 1400 and 2100 h and external quantum efficiency of 2 and 3% for yellow and orange-LECs, respectively. The obtained t1/2 for yellow LEC is much higher than archetype [Ir(ppy)2(phen)]+ and their phenanthroline-based analogues reported so far. The incorporation of an ionic tethered functional group on PI, improved the mobility of the emissive layer and reduced the device turn-on time by 75-88%. This study shows a facile functionalization and characterization of the PI ligand as well as its potential application in optoelectronic devices (OLED).

3.
Dalton Trans ; 51(9): 3652-3660, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35156969

RESUMEN

From the practical point of view, the stability, response time and efficiency of near-infrared light-emitting electrochemical cells (NIR-LECs) are key factors. By using the high potential of chemical modification potential of the phenanthroimidazole ligand, three new binuclear ruthenium(II) complexes with an alkyl spacer as the NIR-emitter were designed and synthesized. NIR-LECs based on these complexes exhibit near-infrared emission at the maximum wavelength of up to 705 nm and with an EQE of up to 0.72% at 4.0 V, which are among the highest values for NIR-LECs based on cationic binuclear ruthenium(II) complexes reported so far. The lifetimes of NIR-LECs based on binuclear complexes were increased about 1.5-to-4-fold with respect to the ones based on mononuclear complexes. Furthermore, a significant decrease in the turn-on time of NIR-LECs by chemical tethering of a new ionic methylpyridinium moiety from 6.3 to 1.4 minutes was observed. It seems that this combinational modification approach can open a new avenue for practical applications.

4.
RSC Adv ; 10(24): 14099-14106, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35498498

RESUMEN

Electroplex emission is rarely seen in ruthenium polypyridyl complexes, and there have been no reports from light-emitting electrochemical cells (LECs) to date. Here, for the first time, near-infrared (NIR) emission via the electroplex mechanism in a LEC based on a new blend of ruthenium polypyridyl complexes is described. The key factor in the design of the new complexes is the 0.4 V decrease in the oxidation half-potential of Ru(ii)/Ru(iii) in [Ru(DPCO)(bpy)2]ClO4 (DPCO = diphenylcarbazone, bpy = 2,2 bipyridine), which is about one-third of the value for benchmark [Ru(bpy)3](ClO4)2, as well as the long lifetime of excited states of 350-450 ns. The LEC based on the new blend with a narrow band gap (≈1.0 eV) of a Ru(DPCO) complex and Ru(bpy)3 2+ can produce an electroluminescence spectrum centred at about 700 nm, which extends to the NIR region with a high external quantum efficiency (EQE) of 0.93% at a very low turn-on voltage of 2.6 V. In particular, the very simple LEC structure was constructed from indium tin oxide (anode)/Ru(DPCO):Ru(bpy)3 2+/Ga:In (cathode), avoiding any polymer or transporting materials, as well as replacing Al or Au by a molten alloy cathode. This system has promising applications in the production of LECs via microcontact or inkjet printing.

5.
Sci Rep ; 9(1): 228, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30659218

RESUMEN

We report on an organic electroluminescent device with simplified geometry and emission in the red to near infrared (NIR) spectral region which, has the lowest turn-on voltage value, 2.3 V, among light emitting electrochemical cells (LEECs). We have synthesized and characterized three novel ruthenium π-extended phenanthroimidazoles which differ on their N^N ligands. The use of dimethyl electron donating groups along with the π-extended phenanthroimidazole moiety promotes ambipolar transport thereby avoiding the use of additional charge transport layers. Furthermore, a facile cathode deposition method based on transfer of a molten alloy (Ga:In) on top of the active layer is deployed, thus avoiding high vacuum thermal deposition which adds versatile assets to our approach. We combine ambipolar charge transport organic complex design and a simple ambient cathode deposition to achieve a potentially cost effective red to NIR emitting device with outstanding performance, opening new avenues towards the development of simplified light emitting sources through device optimization.

6.
Sci Rep ; 7(1): 15739, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29146942

RESUMEN

Near-infrared light-emitting electrochemical cell (NIR-LEEC) has emerged as a new and promising lighting sourcewhich could serve as low-cost alternatives in NIR light-emitting sources which are typically expensive. LECs were also shown advantages such as light weight, simplicity and low operation voltages. However, only a few examples of NIR-LEEC are reported in which external quantum efficiency(EQE) of devices limited to 0.1%. Here, we report, efficient NIR-LEEC based of two novel binuclear ruthenium phenanthroimidzole complex which differ by employing the type of ancillary ligand including 2, 2'bipyridine (bpy) (B1) and 4, 4' dimethyl bpy (B2) that realize maximum EQE of 0.14 and 0.68% and extremely long excited state lifetimes of 220 and 374 ns for thin film were estimated, respectively, indicating that influences of substitution on ancillary ligand. Moreover, this substitution dramatically influences other electroluminescence metrics including decreasing turn on voltage from 4.5 to 3.1 V, increasing maximum luminance (Lmax) from 193to 742 cd.m-2 and increasing lifetime from 539 to 1104 second, which are the best value among the binuclear ruthenium polypyridyl complexes to date.

7.
Dalton Trans ; 45(17): 7195-9, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-27046323

RESUMEN

Light-Emitting Electrochemical Cells (LECs) with a simple device structure ITO/Ru complex/Ga:In were prepared by using heteroleptic ruthenium(ii) complexes containing 2-(2-hydroxyphenyl)-1-(4-bromophenyl)-1h-imidazo[4,5-f][1,10]phenanthroline (hpbpip) as the π-extended ligand. After ancillary ligand modification, the [Ru(hpbpip)(dmbpy)2](ClO4)2 complex shows a deep red electroluminescence emission (2250 cd m(-2) at 6 V) centered at 685 nm, 65 nm red-shifted compared to the [Ru(bpy)3](ClO4)2 benchmark red-emitter at a very low turn voltage (2.6 V), demonstrating its potential for low-cost deep-red light sources. Moreover, the PL quantum yield of the [Ru(hpbpip)(bpy)2](ClO4)2 complex was revealed to be higher (0.121) than the benchmark standard [Ru(bpy)3](2+) (0.095).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA