Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chemistry ; 18(13): 3981-91, 2012 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-22354692

RESUMEN

A Fourier transform ion cyclotron resonance spectrometry (FT-ICR) study of the gas-phase protonation of ammonia-borane and sixteen amine/boranes R(1)R(2)R(3)N-BH(3) (including six compounds synthesized for the first time) has shown that, without exception, the protonation of amine/boranes leads to the formation of dihydrogen. The structural effects on the experimental energetic thresholds of this reaction were determined experimentally. The most likely intermediate and the observed final species (besides H(2)) are R(1)R(2)R(3)N-BH(4)(+) and R(1)R(2)R(3)N-BH(2)(+), respectively. Isotopic substitution allowed the reaction mechanism to be ascertained. Computational analyses ([MP2/6-311+G(d,p)] level) of the thermodynamic stabilities of the R(1)R(2)R(3)N-BH(3) adducts, the acidities of the proton sources required for dihydrogen formation, and the structural effects on these processes were performed. It was further found that the family of R(1)R(2)R(3)N-BH(4)(+) ions is characterized by a three-center, two-electron bond between B and a loosely bound H(2) molecule. Unexpected features of some R(1)R(2)R(3)N-BH(4)(+) ions were found. This information allowed the properties of amine/boranes most suitable for dihydrogen generation and storage to be determined.

2.
Chemistry ; 18(12): 3621-30, 2012 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22334353

RESUMEN

A series of stable organosuperbases, N-alkyl- and N-aryl-1,3-dialkyl-4,5-dimethylimidazol-2-ylidene amines, were efficiently synthesized from N,N'-dialkylthioureas and 3-hydroxy-2-butanone and their basicities were measured in acetonitrile. The derivatives with tert-alkyl groups on the imino nitrogen were found to be more basic than the tBuP(1) (pyrr) phosphazene base in acetonitrile. The origin of the high basicity of these compounds is discussed. In acetonitrile and in the gas phase, the basicity of the alkylimino derivatives depends on the size of the substituent at the imino group, which influences the degree of aromatization of the imidazole ring, as measured by (13)C NMR chemical shifts or by the calculated ΔNICS(1) aromaticity parameters, as well as on solvation effects. If a wider range of imino-substituents, including electron-acceptor substituents, is treated in the analysis then the influence of aromatization is less predominant and the gas-phase basicity becomes more dependent on the field-inductive effect, polarizability, and resonance effects of the substituent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA