Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 36(2): e22146, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35073429

RESUMEN

Mitochondria are maternally inherited organelles that play critical tissue-specific roles, including hormone synthesis and energy production, that influence human development, health, and aging. However, whether mitochondria from women and men exhibit consistent biological differences remains unclear, representing a major gap in knowledge. This meta-analysis systematically examined four domains and six subdomains of mitochondrial biology (total 39 measures), including mitochondrial content, respiratory capacity, reactive oxygen species (ROS) production, morphometry, and mitochondrial DNA copy number. Standardized effect sizes (Hedge's g) of sex differences were computed for each measure using data in 2258 participants (51.5% women) from 50 studies. Only two measures demonstrated aggregate binary sex differences: higher mitochondrial content in women's WAT and isolated leukocyte subpopulations (g = 0.20, χ2 p = .01), and higher ROS production in men's skeletal muscle (g = 0.49, χ2 p < .0001). Sex differences showed weak to no correlation with age or BMI. Studies with small sample sizes tended to overestimate effect sizes (r = -.17, p < .001), and sex differences varied by tissue examined. Our findings point to a wide variability of findings in the literature concerning possible binary sex differences in mitochondrial biology. Studies specifically designed to capture sex- and gender-related differences in mitochondrial biology are needed, including detailed considerations of physical activity and sex hormones.


Asunto(s)
Mitocondrias/fisiología , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Envejecimiento/fisiología , Biología/métodos , ADN Mitocondrial/metabolismo , ADN Mitocondrial/fisiología , Femenino , Humanos , Leucocitos/metabolismo , Leucocitos/fisiología , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Especies Reactivas de Oxígeno/metabolismo , Caracteres Sexuales
2.
J Biol Chem ; 297(4): 101140, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34461088

RESUMEN

Biological energy transduction underlies all physiological phenomena in cells. The metabolic systems that support energy transduction have been of great interest due to their association with numerous pathologies including diabetes, cancer, rare genetic diseases, and aberrant cell death. Commercially available bioenergetics technologies (e.g., extracellular flux analysis, high-resolution respirometry, fluorescent dye kits, etc.) have made practical assessment of metabolic parameters widely accessible. This has facilitated an explosion in the number of studies exploring, in particular, the biological implications of oxygen consumption rate (OCR) and substrate level phosphorylation via glycolysis (i.e., via extracellular acidification rate (ECAR)). Though these technologies have demonstrated substantial utility and broad applicability to cell biology research, they are also susceptible to historical assumptions, experimental limitations, and other caveats that have led to premature and/or erroneous interpretations. This review enumerates various important considerations for designing and interpreting cellular and mitochondrial bioenergetics experiments, some common challenges and pitfalls in data interpretation, and some potential "next steps" to be taken that can address these highlighted challenges.


Asunto(s)
Diabetes Mellitus/metabolismo , Enfermedades Genéticas Congénitas/metabolismo , Glucólisis , Mitocondrias/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Fosforilación Oxidativa , Humanos , Consumo de Oxígeno
3.
J Biol Chem ; 295(48): 16207-16216, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-32747443

RESUMEN

Compensatory changes in energy expenditure occur in response to positive and negative energy balance, but the underlying mechanism remains unclear. Under low energy demand, the mitochondrial electron transport system is particularly sensitive to added energy supply (i.e. reductive stress), which exponentially increases the rate of H2O2 (JH2O2) production. H2O2 is reduced to H2O by electrons supplied by NADPH. NADP+ is reduced back to NADPH by activation of mitochondrial membrane potential-dependent nicotinamide nucleotide transhydrogenase (NNT). The coupling of reductive stress-induced JH2O2 production to NNT-linked redox buffering circuits provides a potential means of integrating energy balance with energy expenditure. To test this hypothesis, energy supply was manipulated by varying flux rate through ß-oxidation in muscle mitochondria minus/plus pharmacological or genetic inhibition of redox buffering circuits. Here we show during both non-ADP- and low-ADP-stimulated respiration that accelerating flux through ß-oxidation generates a corresponding increase in mitochondrial JH2O2 production, that the majority (∼70-80%) of H2O2 produced is reduced to H2O by electrons drawn from redox buffering circuits supplied by NADPH, and that the rate of electron flux through redox buffering circuits is directly linked to changes in oxygen consumption mediated by NNT. These findings provide evidence that redox reactions within ß-oxidation and the electron transport system serve as a barometer of substrate flux relative to demand, continuously adjusting JH2O2 production and, in turn, the rate at which energy is expended via NNT-mediated proton conductance. This variable flux through redox circuits provides a potential compensatory mechanism for fine-tuning energy expenditure to energy balance in real time.


Asunto(s)
Metabolismo Energético , Mitocondrias Musculares/enzimología , NADP Transhidrogenasa AB-Específica/metabolismo , Consumo de Oxígeno , Adenosina Difosfato/metabolismo , Animales , Peróxido de Hidrógeno/metabolismo , Masculino , Ratones , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción
4.
Am J Physiol Endocrinol Metab ; 320(5): E938-E950, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33813880

RESUMEN

Elevated mitochondrial hydrogen peroxide (H2O2) emission and an oxidative shift in cytosolic redox environment have been linked to high-fat-diet-induced insulin resistance in skeletal muscle. To test specifically whether increased flux through mitochondrial fatty acid oxidation, in the absence of elevated energy demand, directly alters mitochondrial function and redox state in muscle, two genetic models characterized by increased muscle ß-oxidation flux were studied. In mice overexpressing peroxisome proliferator-activated receptor-α in muscle (MCK-PPARα), lipid-supported mitochondrial respiration, membrane potential (ΔΨm), and H2O2 production rate (JH2O2) were increased, which coincided with a more oxidized cytosolic redox environment, reduced muscle glucose uptake, and whole body glucose intolerance despite an increased rate of energy expenditure. Similar results were observed in lipin-1-deficient, fatty-liver dystrophic mice, another model characterized by increased ß-oxidation flux and glucose intolerance. Crossing MCAT (mitochondria-targeted catalase) with MCK-PPARα mice normalized JH2O2 production, redox environment, and glucose tolerance, but surprisingly, both basal and absolute insulin-stimulated rates of glucose uptake in muscle remained depressed. Also surprising, when placed on a high-fat diet, MCK-PPARα mice were characterized by much lower whole body, fat, and lean mass as well as improved glucose tolerance relative to wild-type mice, providing additional evidence that overexpression of PPARα in muscle imposes more extensive metabolic stress than experienced by wild-type mice on a high-fat diet. Overall, the findings suggest that driving an increase in skeletal muscle fatty acid oxidation in the absence of metabolic demand imposes mitochondrial reductive stress and elicits multiple counterbalance metabolic responses in an attempt to restore bioenergetic homeostasis.NEW & NOTEWORTHY Prior work has suggested that mitochondrial dysfunction is an underlying cause of insulin resistance in muscle because it limits fatty acid oxidation and therefore leads to the accumulation of cytotoxic lipid intermediates. The implication has been that therapeutic strategies to accelerate ß-oxidation will be protective. The current study provides evidence that genetically increasing flux through ß-oxidation in muscle imposes reductive stress that is not beneficial but rather detrimental to metabolic regulation.


Asunto(s)
Catalasa/genética , Intolerancia a la Glucosa/genética , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , PPAR alfa/genética , Animales , Catalasa/metabolismo , Metabolismo Energético/genética , Intolerancia a la Glucosa/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Musculares/genética , Especificidad de Órganos/genética , Oxidación-Reducción , Estrés Oxidativo/genética , PPAR alfa/metabolismo
5.
FASEB J ; 34(8): 10640-10656, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32579292

RESUMEN

Eicosapentaenoic acid (EPA) has garnered attention after the success of the REDUCE-IT trial, which contradicted previous conclusions on EPA for cardiovascular disease risk. Here we first investigated EPA's preventative role on hyperglycemia and hyperinsulinemia. EPA ethyl esters prevented obesity-induced glucose intolerance, hyperinsulinemia, and hyperglycemia in C57BL/6J mice. Supporting NHANES analyses showed that fasting glucose levels of obese adults were inversely related to EPA intake. We next investigated how EPA improved murine hyperinsulinemia and hyperglycemia. EPA overturned the obesity-driven decrement in the concentration of 18-hydroxyeicosapentaenoic acid (18-HEPE) in white adipose tissue and liver. Treatment of obese inbred mice with RvE1, the downstream immunoresolvant metabolite of 18-HEPE, but not 18-HEPE itself, reversed hyperinsulinemia and hyperglycemia through the G-protein coupled receptor ERV1/ChemR23. To translate the findings, we determined if the effects of RvE1 were dependent on host genetics. RvE1's effects on hyperinsulinemia and hyperglycemia were divergent in diversity outbred mice that model human genetic variation. Secondary SNP analyses further confirmed extensive genetic variation in human RvE1/EPA-metabolizing genes. Collectively, the data suggest EPA prevents hyperinsulinemia and hyperglycemia, in part, through RvE1's activation of ERV1/ChemR23 in a host genetic manner. The studies underscore the need for personalized administration of RvE1 based on genetic/metabolic enzyme profiles.


Asunto(s)
Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacología , Hiperglucemia/genética , Hiperglucemia/prevención & control , Hiperinsulinismo/genética , Hiperinsulinismo/prevención & control , Tejido Adiposo Blanco/efectos de los fármacos , Animales , Intolerancia a la Glucosa/genética , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Polimorfismo de Nucleótido Simple/genética , Receptores de Quimiocina/genética , Receptores Acoplados a Proteínas G/genética
6.
J Biol Chem ; 294(33): 12328-12329, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31420521

RESUMEN

Competing theories have held opposite views on the role of flux through ß-oxidation in causing insulin resistance. New transcriptomics, proteomics, and metabolomics data of skeletal muscle from mice in which lipid oxidation is limited by restricting entry of fat into mitochondria reveal extensive remodeling of metabolic pathways, consistent with an overall reduction in metabolic efficiency and improved metabolic health. These findings point to a potential new therapeutic approach for treating insulin resistance and type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos , Mitocondrias Musculares/metabolismo , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Humanos , Metabolómica , Ratones , Mitocondrias Musculares/genética , Mitocondrias Musculares/patología , Músculo Esquelético/metabolismo , Oxidación-Reducción , Proteómica
7.
Biochem J ; 476(10): 1521-1537, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31092703

RESUMEN

Alterations to branched-chain keto acid (BCKA) oxidation have been implicated in a wide variety of human diseases, ranging from diabetes to cancer. Although global shifts in BCKA metabolism-evident by gene transcription, metabolite profiling, and in vivo flux analyses have been documented across various pathological conditions, the underlying biochemical mechanism(s) within the mitochondrion remain largely unknown. In vitro experiments using isolated mitochondria represent a powerful biochemical tool for elucidating the role of the mitochondrion in driving disease. Such analyses have routinely been utilized across disciplines to shed valuable insight into mitochondrial-linked pathologies. That said, few studies have attempted to model in vitro BCKA oxidation in isolated organelles. The impetus for the present study stemmed from the knowledge that complete oxidation of each of the three BCKAs involves a reaction dependent upon bicarbonate and ATP, both of which are not typically included in respiration experiments. Based on this, it was hypothesized that the inclusion of exogenous bicarbonate and stimulation of respiration using physiological shifts in ATP-free energy, rather than excess ADP, would allow for maximal BCKA-supported respiratory flux in isolated mitochondria. This hypothesis was confirmed in mitochondria from several mouse tissues, including heart, liver and skeletal muscle. What follows is a thorough characterization and validation of a novel biochemical tool for investigating BCKA metabolism in isolated mitochondria.


Asunto(s)
Adenosina Trifosfato/metabolismo , Bicarbonatos/metabolismo , Cetoácidos/metabolismo , Mitocondrias/metabolismo , Consumo de Oxígeno , Animales , Masculino , Ratones , Especificidad de Órganos , Oxidación-Reducción
8.
J Biol Chem ; 293(43): 16889-16898, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30217819

RESUMEN

Naturally or surgically induced postmenopausal women are widely prescribed estrogen therapies to alleviate symptoms associated with estrogen loss and to lower the subsequent risk of developing metabolic diseases, including diabetes and nonalcoholic fatty liver disease. However, the molecular mechanisms by which estrogens modulate metabolism across tissues remain ill-defined. We have previously reported that 17ß-estradiol (E2) exerts antidiabetogenic effects in ovariectomized (OVX) mice by protecting mitochondrial and cellular redox function in skeletal muscle. The liver is another key tissue for glucose homeostasis and a target of E2 therapy. Thus, in the present study we determined the effects of acute loss of ovarian E2 and E2 administration on liver mitochondria. In contrast to skeletal muscle mitochondria, E2 depletion via OVX did not alter liver mitochondrial respiratory function or complex I (CI) specific activities (NADH oxidation, quinone reduction, and H2O2 production). Surprisingly, in vivo E2 replacement therapy and in vitro E2 exposure induced tissue-specific effects on both CI activity and on the rate and topology of CI H2O2 production. Overall, E2 therapy protected and restored the OVX-induced reduction in CI activity in skeletal muscle, whereas in liver mitochondria E2 increased CI H2O2 production and decreased ADP-stimulated respiratory capacity. These results offer novel insights into the tissue-specific effects of E2 on mitochondrial function.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Estradiol/farmacología , Estrógenos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Mitocondrias Hepáticas/metabolismo , Mitocondrias Musculares/metabolismo , Animales , Femenino , Cinética , Ratones , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Musculares/efectos de los fármacos , Oxidación-Reducción
9.
J Biol Chem ; 293(2): 466-483, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29162722

RESUMEN

Cardiac mitochondrial phospholipid acyl chains regulate respiratory enzymatic activity. In several diseases, the rodent cardiac phospholipidome is extensively rearranged; however, whether specific acyl chains impair respiratory enzyme function is unknown. One unique remodeling event in the myocardium of obese and diabetic rodents is an increase in docosahexaenoic acid (DHA) levels. Here, we first confirmed that cardiac DHA levels are elevated in diabetic humans relative to controls. We then used dietary supplementation of a Western diet with DHA as a tool to promote cardiac acyl chain remodeling and to study its influence on respiratory enzyme function. DHA extensively remodeled the acyl chains of cardiolipin (CL), mono-lyso CL, phosphatidylcholine, and phosphatidylethanolamine. Moreover, DHA lowered enzyme activities of respiratory complexes I, IV, V, and I+III. Mechanistically, the reduction in enzymatic activities were not driven by a dramatic reduction in the abundance of supercomplexes. Instead, replacement of tetralinoleoyl-CL with tetradocosahexaenoyl-CL in biomimetic membranes prevented formation of phospholipid domains that regulate enzyme activity. Tetradocosahexaenoyl-CL inhibited domain organization due to favorable Gibbs free energy of phospholipid mixing. Furthermore, in vitro substitution of tetralinoleoyl-CL with tetradocosahexaenoyl-CL blocked complex-IV binding. Finally, reintroduction of linoleic acid, via fusion of phospholipid vesicles to mitochondria isolated from DHA-fed mice, rescued the major losses in the mitochondrial phospholipidome and complexes I, IV, and V activities. Altogether, our results show that replacing linoleic acid with DHA lowers select cardiac enzyme activities by potentially targeting domain organization and phospholipid-protein binding, which has implications for the ongoing debate about polyunsaturated fatty acids and cardiac health.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Ácido Linoleico/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Fosfolípidos/metabolismo , Cardiolipinas/metabolismo , Ácido Eicosapentaenoico/farmacología , Ácidos Grasos Insaturados/metabolismo , Corazón/efectos de los fármacos , Humanos , Espectrometría de Masas , Mitocondrias Cardíacas/efectos de los fármacos , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo
10.
Am J Physiol Endocrinol Metab ; 317(3): E513-E525, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31265325

RESUMEN

Impaired mitochondrial function has been implicated in the pathogenesis of age-associated metabolic diseases through regulation of cellular redox balance. Exercise training is known to promote mitochondrial biogenesis in part through induction of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). Recently, mitochondrial ADP sensitivity has been linked to reactive oxygen species (ROS) emission with potential impact on age-associated physiological outcomes, but the underlying molecular mechanisms remain unclear. Therefore, the present study investigated the effects of aging and exercise training on mitochondrial properties beyond biogenesis, including respiratory capacity, ADP sensitivity, ROS emission, and mitochondrial network structure, in myofibers from inducible muscle-specific PGC-1α-knockout mice and control mice. Aged mice displayed lower running endurance and mitochondrial respiratory capacity than young mice. This was associated with intermyofibrillar mitochondrial network fragmentation, diminished submaximal ADP-stimulated respiration, increased mitochondrial ROS emission, and oxidative stress. Exercise training reversed the decline in maximal respiratory capacity independent of PGC-1α, whereas exercise training rescued the age-related mitochondrial network fragmentation and the impaired submaximal ADP-stimulated respiration in a PGC-1α-dependent manner. Furthermore, lack of PGC-1α was associated with altered phosphorylation and carbonylation of the inner mitochondrial membrane ADP/ATP exchanger adenine nucleotide translocase 1. In conclusion, the present study provides evidence that PGC-1α regulates submaximal ADP-stimulated respiration, ROS emission, and mitochondrial network structure in mouse skeletal muscle during aging and exercise training.


Asunto(s)
Envejecimiento/fisiología , Mitocondrias Musculares/metabolismo , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/fisiología , Condicionamiento Físico Animal/fisiología , Adenosina Difosfato/metabolismo , Animales , Glutatión/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Oxidación-Reducción , Consumo de Oxígeno , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Resistencia Física/fisiología , Especies Reactivas de Oxígeno/metabolismo , Carrera/fisiología
11.
J Immunol ; 198(12): 4738-4752, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28500069

RESUMEN

Obesity is associated with increased risk for infections and poor responses to vaccinations, which may be due to compromised B cell function. However, there is limited information about the influence of obesity on B cell function and underlying factors that modulate B cell responses. Therefore, we studied B cell cytokine secretion and/or Ab production across obesity models. In obese humans, B cell IL-6 secretion was lowered and IgM levels were elevated upon ex vivo anti-BCR/TLR9 stimulation. In murine obesity induced by a high fat diet, ex vivo IgM and IgG were elevated with unstimulated B cells. Furthermore, the high fat diet lowered bone marrow B cell frequency accompanied by diminished transcripts of early lymphoid commitment markers. Murine B cell responses were subsequently investigated upon influenza A/Puerto Rico/8/34 infection using a Western diet model in the absence or presence of docosahexaenoic acid (DHA). DHA, an essential fatty acid with immunomodulatory properties, was tested because its plasma levels are lowered in obesity. Relative to controls, mice consuming the Western diet had diminished Ab titers whereas the Western diet plus DHA improved titers. Mechanistically, DHA did not directly target B cells to elevate Ab levels. Instead, DHA increased the concentration of the downstream specialized proresolving lipid mediators (SPMs) 14-hydroxydocosahexaenoic acid, 17-hydroxydocosahexaenoic acid, and protectin DX. All three SPMs were found to be effective in elevating murine Ab levels upon influenza infection. Collectively, the results demonstrate that B cell responses are impaired across human and mouse obesity models and show that essential fatty acid status is a factor influencing humoral immunity, potentially through an SPM-mediated mechanism.


Asunto(s)
Linfocitos B/inmunología , Ácidos Grasos Esenciales/inmunología , Inmunidad Humoral , Interleucina-6/metabolismo , Obesidad/inmunología , Infecciones por Orthomyxoviridae/inmunología , Animales , Dieta Occidental , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/administración & dosificación , Ácidos Docosahexaenoicos/sangre , Ácidos Docosahexaenoicos/inmunología , Ácidos Grasos Esenciales/sangre , Humanos , Inmunoglobulina M/sangre , Virus de la Influenza A/inmunología , Interleucina-6/inmunología , Activación de Linfocitos , Ratones , Obesidad/complicaciones , Infecciones por Orthomyxoviridae/complicaciones , Receptor Toll-Like 9/inmunología , Receptor Toll-Like 9/metabolismo
12.
J Mol Cell Cardiol ; 121: 94-102, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30008435

RESUMEN

Barth Syndrome (BTHS) is an X-linked recessive disorder characterized by cardiomyopathy and muscle weakness. The underlying cause of BTHS is a mutation in the tafazzin (TAZ) gene, a key enzyme of cardiolipin biosynthesis. The lack of CL arising from loss of TAZ function results in destabilization of the electron transport system, promoting oxidative stress that is thought to contribute to development of cardioskeletal myopathy. Indeed, in vitro studies demonstrate that mitochondria-targeted antioxidants improve contractile capacity in TAZ-deficient cardiomyocytes. The purpose of the present study was to determine if resolving mitochondrial oxidative stress would be sufficient to prevent cardiomyopathy and skeletal myopathy in vivo using a mouse model of BTHS. To this end we crossed mice that overexpress catalase in the mitochondria (MCAT mice) with TAZ-deficient mice (TAZKD) to produce TAZKD mice that selectively overexpress catalase in the mitochondria (TAZKD+MCAT mice). TAZKD+MCAT mice exhibited decreased mitochondrial H2O2 emission and lipid peroxidation compared to TAZKD littermates, indicating decreased oxidative stress. Despite the improvements in oxidative stress, TAZKD+MCAT mice developed cardiomyopathy and mild muscle weakness similar to TAZKD littermates. These findings indicate that resolving oxidative stress is not sufficient to suppress cardioskeletal myopathy associated with BTHS.


Asunto(s)
Síndrome de Barth/genética , Cardiomiopatías/genética , Catalasa/genética , Estrés Oxidativo/genética , Factores de Transcripción/genética , Aciltransferasas , Animales , Antioxidantes/administración & dosificación , Síndrome de Barth/tratamiento farmacológico , Síndrome de Barth/fisiopatología , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/patología , Catalasa/antagonistas & inhibidores , Modelos Animales de Enfermedad , Humanos , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/genética , Mitocondrias/enzimología , Mutación , Contracción Miocárdica/genética , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos
13.
J Physiol ; 595(3): 677-693, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27647415

RESUMEN

KEY POINTS: Long-chain acyl-CoA synthetase 6 (ACSL6) mRNA is present in human and rat skeletal muscle, and is modulated by nutritional status: exercise and fasting decrease ACSL6 mRNA, whereas acute lipid ingestion increase its expression. ACSL6 genic inhibition in rat primary myotubes decreased lipid accumulation, as well as activated the higher mitochondrial oxidative capacity programme and fatty acid oxidation through the AMPK/PGC1-α pathway. ACSL6 overexpression in human primary myotubes increased phospholipid species and decreased oxidative metabolism. ABSTRACT: Long-chain acyl-CoA synthetases (ACSL 1 to 6) are key enzymes regulating the partitioning of acyl-CoA species toward different metabolic fates such as lipid synthesis or ß-oxidation. Despite our understanding of ecotopic lipid accumulation in skeletal muscle being associated with metabolic diseases such as obesity and type II diabetes, the role of specific ACSL isoforms in lipid synthesis remains unclear. In the present study, we describe for the first time the presence of ACSL6 mRNA in human skeletal muscle and the role that ACSL6 plays in lipid synthesis in both rodent and human skeletal muscle. ACSL6 mRNA was observed to be up-regulated by acute high-fat meal ingestion in both rodents and humans. In rats, we also demonstrated that fasting and chronic aerobic training negatively modulated the ACSL6 mRNA and other genes of lipid synthesis. Similar results were obtained following ACSL6 knockdown in rat myotubes, which was associated with a decreased accumulation of TAGs and lipid droplets. Under the same knockdown condition, we further demonstrate an increase in fatty acid content, p-AMPK, mitochondrial content, mitochondrial respiratory rates and palmitate oxidation. These results were associated with increased PGC-1α, UCP2 and UCP3 mRNA and decreased reactive oxygen species production. In human myotubes, ACSL6 overexpression reduced palmitate oxidation and PGC-1α mRNA. In conclusion, ACSL6 drives acyl-CoA toward lipid synthesis and its downregulation improves mitochondrial biogenesis, respiratory capacity and lipid oxidation. These outcomes are associated with the activation of the AMPK/PGC1-α pathway.


Asunto(s)
Coenzima A Ligasas/metabolismo , Metabolismo de los Lípidos/fisiología , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animales , Células Cultivadas , Citrato (si)-Sintasa/metabolismo , Coenzima A Ligasas/genética , Dieta Alta en Grasa , Ácidos Grasos/metabolismo , Femenino , Humanos , Masculino , Obesidad/metabolismo , Oxidación-Reducción , Consumo de Oxígeno , ARN Mensajero/metabolismo , Ratas Wistar
15.
FASEB J ; 30(2): 775-84, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26506979

RESUMEN

Obesity has more than doubled in children and tripled in adolescents in the past 30 yr. The association between metabolic disorders in offspring of obese mothers with diabetes has long been known; however, a growing body of research indicates that fathers play a significant role through presently unknown mechanisms. Recent observations have shown that changes in paternal diet may result in transgenerational inheritance of the insulin-resistant phenotype. Although diet-induced epigenetic reprogramming via paternal lineage has recently received much attention in the literature, the effect of paternal physical activity on offspring metabolism has not been adequately addressed. In the current study, we investigated the effects of long-term voluntary wheel-running in C57BL/6J male mice on their offspring's predisposition to insulin resistance. Our observations revealed that fathers subjected to wheel-running for 12 wk produced offspring that were more susceptible to the adverse effects of a high-fat diet, manifested in increased body weight and adiposity, impaired glucose tolerance, and elevated insulin levels. Long-term paternal exercise also altered expression of several metabolic genes, including Ogt, Oga, Pdk4, H19, Glut4, and Ptpn1, in offspring skeletal muscle. Finally, prolonged exercise affected gene methylation patterns and micro-RNA content in the sperm of fathers, providing a potential mechanism for the transgenerational inheritance. These findings suggest that paternal exercise produces offspring with a thrifty phenotype, potentially via miRNA-induced modification of sperm.


Asunto(s)
Adiposidad , Metabolismo Energético , Epigénesis Genética , Resistencia a la Insulina , Obesidad/metabolismo , Condicionamiento Físico Animal , Animales , Masculino , Ratones , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Obesidad/genética , Obesidad/patología
16.
Korean J Physiol Pharmacol ; 21(6): 567-577, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29200899

RESUMEN

Obesity is known to induce inhibition of glucose uptake, reduction of lipid metabolism, and progressive loss of skeletal muscle function, which are all associated with mitochondrial dysfunction in skeletal muscle. Mitochondria are dynamic organelles that regulate cellular metabolism and bioenergetics, including ATP production via oxidative phosphorylation. Due to these critical roles of mitochondria, mitochondrial dysfunction results in various diseases such as obesity and type 2 diabetes. Obesity is associated with impairment of mitochondrial function (e.g., decrease in O2 respiration and increase in oxidative stress) in skeletal muscle. The balance between mitochondrial fusion and fission is critical to maintain mitochondrial homeostasis in skeletal muscle. Obesity impairs mitochondrial dynamics, leading to an unbalance between fusion and fission by favorably shifting fission or reducing fusion proteins. Mitophagy is the catabolic process of damaged or unnecessary mitochondria. Obesity reduces mitochondrial biogenesis in skeletal muscle and increases accumulation of dysfunctional cellular organelles, suggesting that mitophagy does not work properly in obesity. Mitochondrial dysfunction and oxidative stress are reported to trigger apoptosis, and mitochondrial apoptosis is induced by obesity in skeletal muscle. It is well known that exercise is the most effective intervention to protect against obesity. Although the cellular and molecular mechanisms by which exercise protects against obesity-induced mitochondrial dysfunction in skeletal muscle are not clearly elucidated, exercise training attenuates mitochondrial dysfunction, allows mitochondria to maintain the balance between mitochondrial dynamics and mitophagy, and reduces apoptotic signaling in obese skeletal muscle.

17.
J Mol Cell Cardiol ; 97: 191-6, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27262673

RESUMEN

Critical limb ischemia is a devastating manifestation of peripheral arterial disease with no effective strategies for improving morbidity and mortality outcomes. We tested the hypothesis that cellular mitochondrial function is a key component of limb pathology and that improving mitochondrial function represents a novel paradigm for therapy. BALB/c mice were treated with a therapeutic mitochondrial-targeting peptide (MTP-131) and subjected to limb ischemia (HLI). Compared to vehicle control, MTP-131 rescued limb muscle capillary density and blood flow (64.7±11% of contralateral vs. 39.9±4%), and improved muscle regeneration. MTP-131 also increased electron transport system flux across all conditions at HLI day-7. In vitro, primary muscle cells exposed to experimental ischemia demonstrated markedly reduced (~75%) cellular respiration, which was rescued by MTP-131 during a recovery period. Compared to muscle cells, endothelial cell (HUVEC) respiration was inherently protected from ischemia (~30% reduction), but was also enhanced by MTP-131. These findings demonstrate an important link between ischemic tissue bioenergetics and limb blood flow and indicate that the mitochondria may be a pharmaceutical target for therapeutic intervention during critical limb ischemia.


Asunto(s)
Miembro Posterior/irrigación sanguínea , Miembro Posterior/metabolismo , Isquemia/complicaciones , Isquemia/metabolismo , Mitocondrias Musculares/metabolismo , Enfermedades Musculares/etiología , Animales , Respiración de la Célula/efectos de los fármacos , Modelos Animales de Enfermedad , Células Endoteliales , Humanos , Masculino , Ratones , Enfermedades Musculares/patología , Enfermedades Musculares/terapia , Necrosis , Oligopéptidos/farmacología , Péptidos/farmacología
18.
Am J Physiol Cell Physiol ; 311(2): C239-45, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27335172

RESUMEN

Oxidative phosphorylation (OXPHOS) efficiency, defined as the ATP-to-O ratio, is a critical feature of mitochondrial function that has been implicated in health, aging, and disease. To date, however, the methods to measure ATP/O have primarily relied on indirect approaches or entail parallel rather than simultaneous determination of ATP synthesis and O2 consumption rates. The purpose of this project was to develop and validate an approach to determine the ATP/O ratio in permeabilized fiber bundles (PmFBs) from simultaneous measures of ATP synthesis (JATP) and O2 consumption (JO2 ) rates in real time using a custom-designed apparatus. JO2 was measured via a polarigraphic oxygen sensor and JATP via fluorescence using an enzyme-linked assay system (hexokinase II, glucose-6-phosphate dehydrogenase) linked to NADPH production. Within the dynamic linear range of the assay system, ADP-stimulated increases in steady-state JATP mirrored increases in steady-state JO2 (r(2) = 0.91, P < 0.0001, n = 57 data points). ATP/O ratio was less than one under low rates of respiration (15 µM ADP) but increased to more than two at moderate (200 µM ADP) and maximal (2,000 µM ADP) rates of respiration with an interassay coefficient of variation of 24.03, 16.72, and 11.99%, respectively. Absolute and relative (to mechanistic) ATP/O ratios were lower in PmFBs (2.09 ± 0.251, 84%) compared with isolated mitochondria (2.44 ± 0.124, 98%). ATP/O ratios in PmFBs were not affected by the activity of adenylate kinase or creatine kinase. These findings validate an enzyme-linked respiratory clamp system for measuring OXPHOS efficiency in PmFBs and provide evidence that OXPHOS efficiency increases as energy demand increases.


Asunto(s)
Mitocondrias/metabolismo , Mitocondrias/fisiología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adenilato Quinasa/metabolismo , Animales , Glucosafosfato Deshidrogenasa/metabolismo , Hexoquinasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , NADP/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno/fisiología
19.
J Lipid Res ; 57(7): 1231-42, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27140664

RESUMEN

The objective of our study was to determine the mechanism of action of the short-chain ceramide analog, C6-ceramide, and the breast cancer drug, tamoxifen, which we show coactively depress viability and induce apoptosis in human acute myelogenous leukemia cells. Exposure to the C6-ceramide-tamoxifen combination elicited decreases in mitochondrial membrane potential and complex I respiration, increases in reactive oxygen species (ROS), and release of mitochondrial proapoptotic proteins. Decreases in ATP levels, reduced glycolytic capacity, and reduced expression of inhibitors of apoptosis proteins also resulted. Cytotoxicity of the drug combination was mitigated by exposure to antioxidant. Cells metabolized C6-ceramide by glycosylation and hydrolysis, the latter leading to increases in long-chain ceramides. Tamoxifen potently blocked glycosylation of C6-ceramide and long-chain ceramides. N-desmethyltamoxifen, a poor antiestrogen and the major tamoxifen metabolite in humans, was also effective with C6-ceramide, indicating that traditional antiestrogen pathways are not involved in cellular responses. We conclude that cell death is driven by mitochondrial targeting and ROS generation and that tamoxifen enhances the ceramide effect by blocking its metabolism. As depletion of ATP and targeting the "Warburg effect" represent dynamic metabolic insult, this ceramide-containing combination may be of utility in the treatment of leukemia and other cancers.


Asunto(s)
Ceramidas/administración & dosificación , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Tamoxifeno/administración & dosificación , Adenosina Trifosfato/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Sinergismo Farmacológico , Complejo I de Transporte de Electrón/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
20.
Am J Physiol Endocrinol Metab ; 311(2): E293-301, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27329802

RESUMEN

The loss of strength in combination with constant fatigue is a burden on cancer patients undergoing chemotherapy. Doxorubicin, a standard chemotherapy drug used in the clinic, causes skeletal muscle dysfunction and increases mitochondrial H2O2 We hypothesized that the combined effect of cancer and chemotherapy in an immunocompetent breast cancer mouse model (E0771) would compromise skeletal muscle mitochondrial respiratory function, leading to an increase in H2O2-emitting potential and impaired muscle function. Here, we demonstrate that cancer chemotherapy decreases mitochondrial respiratory capacity supported with complex I (pyruvate/glutamate/malate) and complex II (succinate) substrates. Mitochondrial H2O2-emitting potential was altered in skeletal muscle, and global protein oxidation was elevated with cancer chemotherapy. Muscle contractile function was impaired following exposure to cancer chemotherapy. Genetically engineering the overexpression of catalase in mitochondria of muscle attenuated mitochondrial H2O2 emission and protein oxidation, preserving mitochondrial and whole muscle function despite cancer chemotherapy. These findings suggest mitochondrial oxidants as a mediator of cancer chemotherapy-induced skeletal muscle dysfunction.


Asunto(s)
Antineoplásicos/farmacología , Catalasa/efectos de los fármacos , Doxorrubicina/farmacología , Mitocondrias Musculares/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Animales , Neoplasias de la Mama/tratamiento farmacológico , Catalasa/genética , Catalasa/metabolismo , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/efectos de los fármacos , Complejo II de Transporte de Electrones/metabolismo , Femenino , Peróxido de Hidrógeno/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias Musculares/enzimología , Mitocondrias Musculares/metabolismo , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/fisiopatología , Oxidación-Reducción/efectos de los fármacos , Proteínas/efectos de los fármacos , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA