Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(16): 8663-8676, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37503841

RESUMEN

Deazaguanine DNA modifications are widespread in phages, particularly in those with pathogenic hosts. Pseudomonas phage iggy substitutes ∼16.5% of its genomic 2'-deoxyguanosine (G) with dPreQ0, and the iggy deazaguanine transglycosylase (DpdA) is unique in having a strict GA target motif, not observed previously. The iggy PreQ0 modification is shown to provide protection against both restriction endonucleases and Cas9 (when present in PAM), thus expanding our understanding of the deazaguanine modification system, its potential, and diversity. Phage iggy represents a new genus of Pseudomonas phages within the Queuovirinae subfamily; which have very little in common with other published phage genomes in terms of nucleotide similarity (<10%) and common proteins (<2%). Interestingly, shared similarity is concentrated in dpdA and preQ0 biosynthesis genes. TEM imaging confirmed a siphovirus morphology with a prolate icosahedral head and a non-contractile flexible tail with one long central tail spike. The observed protective effect of the deazaguanine modification on the iggy DNA may contribute to its broad within-species host range. Phage iggy was isolated on Pseudomonas aeruginosa PAO1, but also infects PDO300, PAK, PA14, as well as 10 of 27 tested environmental isolates and 13 of 20 tested clinical isolates of P. aeruginosa from patients with cystic fibrosis.


Asunto(s)
Bacteriófagos , ADN Viral , Desoxiguanosina , Fagos Pseudomonas , Humanos , Bacteriófagos/genética , Sistemas CRISPR-Cas , Fagos Pseudomonas/genética , Desoxiguanosina/análogos & derivados , ADN Viral/química
2.
Arch Virol ; 166(10): 2887-2894, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34347170

RESUMEN

The complete genome sequence of the virulent bacteriophage PMBT3, isolated on the proteolytic Pseudomonas grimontii strain MBTL2-21, showed no significant similarity to other known phage genome sequences, making this phage the first reported to infect a strain of P. grimontii. Electron microscopy revealed PMBT3 to be a member of the family Siphoviridae, with notably long and flexible whiskers. The linear, double-stranded genome of 87,196 bp has a mol% G+C content of 60.4 and contains 116 predicted protein-encoding genes. A putative tellurite resistance (terB) gene, originally reported to occur in the genome of a bacterium, was detected in the genome of phage PMBT3.


Asunto(s)
Pseudomonas/virología , Animales , Bacteriólisis , Composición de Base , Secuencia de Bases , ADN Viral/genética , Genoma Viral/genética , Especificidad del Huésped , Leche/microbiología , Filogenia , Fagos Pseudomonas/clasificación , Fagos Pseudomonas/genética , Fagos Pseudomonas/fisiología , Fagos Pseudomonas/ultraestructura , Siphoviridae/clasificación , Siphoviridae/genética , Siphoviridae/fisiología , Siphoviridae/ultraestructura , Proteínas Virales/genética , Virión/ultraestructura
3.
Appl Environ Microbiol ; 86(13)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32303549

RESUMEN

Streptococcus thermophilus is a lactic acid bacterium commonly used for the manufacture of yogurt and specialty cheeses. Virulent phages represent a major risk for milk fermentation processes worldwide, as they can inactivate the added starter bacterial cells, leading to low-quality fermented dairy products. To date, four genetically distinct groups of phages infecting S. thermophilus have been described. Here, we describe a fifth group. Phages P738 and D4446 are virulent siphophages that infect a few industrial strains of S. thermophilus The genomes of phages P738 and D4446 were sequenced and found to contain 34,037 and 33,656 bp as well as 48 and 46 open reading frames, respectively. Comparative genomic analyses revealed that the two phages are closely related to each other but display very limited similarities to other S. thermophilus phages. In fact, these two novel S. thermophilus phages share similarities with streptococcal phages of nondairy origin, suggesting that they emerged recently in the dairy environment.IMPORTANCE Despite decades of research and adapted antiphage strategies such as CRISPR-Cas systems, virulent phages are still a persistent risk for the milk fermentation industry worldwide, as they can cause manufacturing failures and alter product quality. Phages P738 and D4446 are novel virulent phages that infect the food-grade Gram-positive bacterial species Streptococcus thermophilus These two related viruses represent a fifth group of S. thermophilus phages, as they are significantly distinct from other known S. thermophilus phages. Both phages share similarities with phages infecting nondairy streptococci, suggesting their recent emergence and probable coexistence in dairy environments. These findings highlight the necessity of phage surveillance programs as the phage population evolves in response to the application of antiphage strategies.


Asunto(s)
Siphoviridae/clasificación , Fagos de Streptococcus/clasificación , Streptococcus thermophilus/virología , Microscopía Electrónica de Transmisión , Análisis de Secuencia de ADN , Siphoviridae/genética , Siphoviridae/ultraestructura , Fagos de Streptococcus/genética , Fagos de Streptococcus/ultraestructura
4.
Crit Rev Food Sci Nutr ; 60(18): 3103-3132, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31656083

RESUMEN

Yeasts are eukaryotic microorganisms which have a long history in the biotechnology of food production, as they have been used since centuries in bread-making or in the production of alcoholic beverages such as wines or beers. Relative to this importance, a lot of research has been devoted to the study of yeasts involved in making these important products. The role of yeasts in other fermentations in association with other microorganisms - mainly lactic acid bacteria - has been relatively less studied, and often it is not clear if yeasts occurring in such fermentations are contaminants with no role in the fermentation, spoilage microorganisms or whether they actually serve a technological or functional purpose. Some knowledge is available for yeasts used as starter cultures in fermented raw sausages or in the production of acid curd cheeses. This review aimed to summarize the current knowledge on the taxonomy, the presence and potential functional or technological roles of yeasts in traditional fermented plant, dairy, fish and meat fermentations.


Asunto(s)
Microbiología de Alimentos , Levaduras , Animales , Cerveza , Pan , Fermentación
5.
Arch Virol ; 165(1): 233-236, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31676997

RESUMEN

The Siphoviridae phage PMBT6 was identified by transmission electron microscopy in the supernatant of Bifidobacterium thermophilum MBT94004 bioreactor fermentation culture, where it occurred at a moderately high titer. Genome analysis of the bacterial DNA confirmed the presence of this prophage within the genome of the lysogenic host. Under laboratory conditions, the prophage could not be induced by mitomycin C, ultraviolet C irradiation or hydrogen peroxide, suggesting that the prophage was released by spontaneous induction under (yet unknown) bioreactor conditions. Genome sequencing of the virion resulted in a linear, double-stranded DNA molecule of 36,561 bp with a mol% G + C content of 61.7 and 61 predicted open reading frames with low similarity to other Bifidobacterium spp. genomes, confirming that PMBT6 represents a novel temperate phage for this genus.


Asunto(s)
Bacteriófagos/genética , Bifidobacterium/crecimiento & desarrollo , Secuenciación Completa del Genoma/métodos , Bacteriófagos/clasificación , Bacteriófagos/ultraestructura , Composición de Base , Bifidobacterium/virología , Reactores Biológicos/microbiología , Fermentación , Tamaño del Genoma , Genoma Viral , Microscopía Electrónica de Transmisión , Sistemas de Lectura Abierta , Profagos/clasificación , Profagos/genética
6.
Int J Mol Sci ; 21(15)2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32707941

RESUMEN

Phages are generally considered species- or even strain-specific, yet polyvalent phages are able to infect bacteria from different genera. Here, we characterize the novel polyvalent phage S144, a member of the Loughboroughvirus genus. By screening 211 Enterobacteriaceae strains, we found that phage S144 forms plaques on specific serovars of Salmonella enterica subsp. enterica and on Cronobacter sakazakii. Analysis of phage resistant mutants suggests that the O-antigen of lipopolysaccharide is the phage receptor in both bacterial genera. The S144 genome consists of 53,628 bp and encodes 80 open reading frames (ORFs), but no tRNA genes. In total, 32 ORFs coding for structural proteins were confirmed by ESI-MS/MS analysis, whereas 45 gene products were functionally annotated within DNA metabolism, packaging, nucleotide biosynthesis and phage morphogenesis. Transmission electron microscopy showed that phage S144 is a myovirus, with a prolate head and short tail fibers. The putative S144 tail fiber structure is, overall, similar to the tail fiber of phage Mu and the C-terminus shows amino acid similarity to tail fibers of otherwise unrelated phages infecting Cronobacter. Since all phages in the Loughboroughvirus genus encode tail fibers similar to S144, we suggest that phages in this genus infect Cronobacter sakazakii and are polyvalent.


Asunto(s)
Bacteriófagos/genética , Corticoviridae/genética , Cronobacter sakazakii/genética , ADN Viral/genética , Antígenos O/metabolismo , Fagos de Salmonella/genética , Salmonella/genética , Bacteriófagos/química , Bacteriófagos/metabolismo , Bacteriófagos/ultraestructura , Clasificación , Cronobacter sakazakii/virología , Genoma Viral , Especificidad del Huésped , Microscopía Electrónica de Transmisión , Antígenos O/genética , Sistemas de Lectura Abierta , Proteómica , Salmonella/virología , Análisis de Secuencia de ADN , Espectrometría de Masas en Tándem
7.
Mol Biol Evol ; 35(5): 1147-1159, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688542

RESUMEN

The evolution of asexual organisms is driven not only by the inheritance of genetic modification but also by the acquisition of foreign DNA. The contribution of vertical and horizontal processes to genome evolution depends on their rates per year and is quantified by the ratio of recombination to mutation. These rates have been estimated for bacteria; however, no estimates have been reported for phages. Here, we delineate the contribution of mutation and recombination to dsDNA phage genome evolution. We analyzed 34 isolates of the 936 group of Siphoviridae phages using a Lactococcus lactis strain from a single dairy over 29 years. We estimate a constant substitution rate of 1.9 × 10-4 substitutions per site per year due to mutation that is within the range of estimates for eukaryotic RNA and DNA viruses. The reconstruction of recombination events reveals a constant rate of five recombination events per year and 4.5 × 10-3 nucleotide alterations due to recombination per site per year. Thus, the recombination rate exceeds the substitution rate, resulting in a relative effect of recombination to mutation (r/m) of ∼24 that is homogenous over time. Especially in the early transcriptional region, we detect frequent gene loss and regain due to recombination with phages of the 936 group, demonstrating the role of the 936 group pangenome as a reservoir of genetic variation. The observed substitution rate homogeneity conforms to the neutral theory of evolution; hence, the neutral theory can be applied to phage genome evolution and also to genetic variation brought about by recombination.


Asunto(s)
Evolución Molecular , Genoma Viral , Siphoviridae/genética , Lactococcus lactis/virología , Tasa de Mutación , Recombinación Genética
8.
J Virol ; 91(22)2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28878086

RESUMEN

A novel archaeal lytic virus targeting species of the genus Methanosarcina was isolated using Methanosarcina mazei strain Gö1 as the host. Due to its spherical morphology, the virus was designated Methanosarcina spherical virus (MetSV). Molecular analysis demonstrated that MetSV contains double-stranded linear DNA with a genome size of 10,567 bp containing 22 open reading frames (ORFs), all oriented in the same direction. Functions were predicted for some of these ORFs, i.e., such as DNA polymerase, ATPase, and DNA-binding protein as well as envelope (structural) protein. MetSV-derived spacers in CRISPR loci were detected in several published Methanosarcina draft genomes using bioinformatic tools, revealing a potential protospacer-adjacent motif (PAM) motif (TTA/T). Transcription and expression of several predicted viral ORFs were validated by reverse transcription-PCR (RT-PCR), PAGE analysis, and liquid chromatography-mass spectrometry (LC-MS)-based proteomics. Analysis of core lipids by atmospheric pressure chemical ionization (APCI) mass spectrometry showed that MetSV and Methanosarcina mazei both contain archaeol and glycerol dialkyl glycerol tetraether without a cyclopentane moiety (GDGT-0). The MetSV host range is limited to Methanosarcina strains growing as single cells (M. mazei, Methanosarcina barkeri and Methanosarcina soligelidi). In contrast, strains growing as sarcina-like aggregates were apparently protected from infection. Heterogeneity related to morphology phases in M. mazei cultures allowed acquisition of resistance to MetSV after challenge by growing cultures as sarcina-like aggregates. CRISPR/Cas-mediated resistance was excluded since neither of the two CRISPR arrays showed MetSV-derived spacer acquisition. Based on these findings, we propose that changing the morphology from single cells to sarcina-like aggregates upon rearrangement of the envelope structure prevents infection and subsequent lysis by MetSV.IMPORTANCE Methanoarchaea are among the most abundant organisms on the planet since they are present in high numbers in major anaerobic environments. They convert various carbon sources, e.g., acetate, methylamines, or methanol, to methane and carbon dioxide; thus, they have a significant impact on the emission of major greenhouse gases. Today, very little is known about viruses specifically infecting methanoarchaea that most probably impact the abundance of methanoarchaea in microbial consortia. Here, we characterize the first identified Methanosarcina-infecting virus (MetSV) and show a mechanism for acquiring resistance against MetSV. Based on our results, we propose that growth as sarcina-like aggregates prevents infection and subsequent lysis. These findings allow new insights into the virus-host relationship in methanogenic community structures, their dynamics, and their phase heterogeneity. Moreover, the availability of a specific virus provides new possibilities to deepen our knowledge of the defense mechanisms of potential hosts and offers tools for genetic manipulation.


Asunto(s)
Virus de Archaea/fisiología , Methanosarcina/virología , Methanosarcina/genética , Especificidad de la Especie
9.
Appl Environ Microbiol ; 84(10)2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29523549

RESUMEN

Phages of Streptococcus thermophilus present a major threat to the production of many fermented dairy products. To date, only a few studies have assessed the biodiversity of S. thermophilus phages in dairy fermentations. In order to develop strategies to limit phage predation in this important industrial environment, it is imperative that such studies are undertaken and that phage-host interactions of this species are better defined. The present study investigated the biodiversity and evolution of phages within an Irish dairy fermentation facility over an 11-year period. This resulted in the isolation of 17 genetically distinct phages, all of which belong to the so-called cos group. The evolution of phages within the factory appears to be influenced by phages from other dairy plants introduced into the factory for whey protein powder production. Modular exchange, primarily within the regions encoding lysogeny and replication functions, was the major observation among the phages isolated between 2006 and 2016. Furthermore, the genotype of the first isolate in 2006 was observed continuously across the following decade, highlighting the ability of these phages to prevail in the factory setting for extended periods of time. The proteins responsible for host recognition were analyzed, and carbohydrate-binding domains (CBDs) were identified in the distal tail (Dit), the baseplate proteins, and the Tail-associated lysin (Tal) variable regions (VR1 and VR2) of many isolates. This supports the notion that S. thermophilus phages recognize a carbohydrate receptor on the cell surface of their host.IMPORTANCE Dairy fermentations are consistently threatened by the presence of bacterial viruses (bacteriophages or phages), which may lead to a reduction in acidification rates or even complete loss of the fermentate. These phages may persist in factories for long periods of time. The objective of the current study was to monitor the progression of phages infecting the dairy bacterium Streptococcus thermophilus over a period of 11 years in an Irish dairy plant so as to understand how these phages evolve. A focused analysis of the genomic region that encodes host recognition functions highlighted that the associated proteins harbor a variety of carbohydrate-binding domains, which corroborates the notion that phages of S. thermophilus recognize carbohydrate receptors at the initial stages of the phage cycle.


Asunto(s)
Productos Lácteos Cultivados/microbiología , Fagos de Streptococcus/genética , Streptococcus thermophilus/virología , Evolución Biológica , Industria Lechera , Fermentación , Genotipo , Especificidad del Huésped , Irlanda , Lisogenia , Filogenia , Fagos de Streptococcus/clasificación , Fagos de Streptococcus/aislamiento & purificación , Fagos de Streptococcus/fisiología , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
10.
Int J Syst Evol Microbiol ; 68(1): 371-376, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29231158

RESUMEN

A Gram-stain-negative, rod-shaped Proteobacteria isolate, MBT G8648T, was obtained from an acid curd cheese called Quargel. The isolate was moderately salt tolerant and motile, with numerous peritrichous flagella. The 16S rRNA gene sequence analysis indicated that the strain belongs to the genus Halomonas, with 98.42 % 16S rRNA gene sequence similarity with Halomonas titanicae BH1T as nearest related neighbour. Further comparative sequence analysis of secA and gyrB genes, as well as physiological and biochemical tests, revealed that this bacterium formed a taxon well-separated from its nearest neighbours and other established Halomonas species. Thus, the strain represents a new species, for which the name Halomonas nigrificans sp. nov. is proposed, with strain MBT G8648T (=LMG 29097T =DSM 105749T) as type strain.


Asunto(s)
Queso/microbiología , Microbiología de Alimentos , Halomonas/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Europa (Continente) , Genes Bacterianos , Halomonas/genética , Halomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
11.
Arch Virol ; 163(9): 2575-2577, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29786121

RESUMEN

Psychrotrophic gram-negative Pseudomonas spp. represent a serious problem in the dairy industry as they can cause spoilage of milk and dairy products. Bacteriophages have moved into focus as promising biocontrol agents for such food spoilage bacteria. The virulent Siphoviridae phage PMBT14 was isolated on a mutant variant of P. fluorescens DSM 50090 challenged with an unrelated virulent P. fluorescens DSM 50090 Podoviridae phage (i.e., mutant strain DSM 50090R). PMBT14 has a 47,820-bp dsDNA genome with 76 predicted open reading frames (ORFs). Its genome shows no significant sequence similarity to that of known phages, suggesting that PMBT14 represents a novel phage. Phage PMBT14 could be a promising biocontrol agent for P. fluorescens in milk or dairy foods.


Asunto(s)
Genoma Viral , Lisogenia/fisiología , Fagos Pseudomonas/genética , Pseudomonas fluorescens/virología , Siphoviridae/genética , Proteínas Virales/genética , Agentes de Control Biológico , Mapeo Cromosómico , ADN/genética , ADN/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Productos Lácteos/microbiología , Microbiología de Alimentos , Ontología de Genes , Tamaño del Genoma , Humanos , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Fagos Pseudomonas/clasificación , Fagos Pseudomonas/patogenicidad , Fagos Pseudomonas/ultraestructura , Análisis de Secuencia de ADN , Siphoviridae/clasificación , Siphoviridae/metabolismo , Proteínas Virales/metabolismo
12.
Arch Virol ; 163(8): 2139-2154, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29687158

RESUMEN

Campylobacter phage vB_CjeM_Los1 was recently isolated from a slaughterhouse in the Republic of Ireland using the host Campylobacter jejuni subsp. jejuni PT14, and full-genome sequencing and annotation were performed. The genome was found to be 134,073 bp in length and to contain 169 predicted open reading frames. Transmission electron microscopy images of vB_CjeM_Los1 revealed that it belongs to the family Myoviridae, with tail fibres observed in both extended and folded conformations, as seen in T4. The genome size and morphology of vB_CjeM_Los1 suggest that it belongs to the genus Cp8virus, and seven other Campylobacter phages with similar size characteristics have also been fully sequenced. In this work, comparative studies were performed in relation to genomic rearrangements and conservation within each of the eight genomes. None of the eight genomes were found to have undergone internal rearrangements, and their sequences retained more than 98% identity with one another despite the widespread geographical distribution of each phage. Whole-genome phylogenetics were also performed, and clades were shown to be representative of the differing number of tRNAs present in each phage. This may be an indication of lineages within the genus, despite their striking homology.


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Genoma Viral , Myoviridae/genética , Mataderos , Animales , Bacteriófagos/clasificación , Bacteriófagos/ultraestructura , Campylobacter/virología , Genómica , Irlanda , Microscopía Electrónica de Transmisión , Myoviridae/clasificación , Myoviridae/aislamiento & purificación , Sistemas de Lectura Abierta , Filogenia , Aves de Corral/virología , Proteínas Virales/genética
13.
BMC Genomics ; 18(1): 146, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28183268

RESUMEN

BACKGROUND: Despite continuous research efforts, bacterio(phages) infecting Lactococcus lactis starter strains persist as a major threat to dairy fermentations. The lactococcal P335 phages, which are currently classified into four sub-groups (I-IV), are the second most frequently isolated phage group in an industrial dairy context. RESULTS: The current work describes the isolation and comparative genomic analysis of 17 novel P335 group phages. Detailed analysis of the genomic region of P335 phages encoding the so-called "baseplate", which includes the receptor binding protein (RBP) was combined with a functional characterization of the RBP of sub-group III and IV phages. Additionally, calcium-dependence assays revealed a specific requirement for calcium by sub-group IV phages while host range analysis highlighted a higher number of strains with CWPS type A (11 of 39 strains) are infected by the P335 phages assessed in this study than those with a C (five strains), B (three of 39 strains) or unknown (one of 39 strains) CWPS type. CONCLUSIONS: These analyses revealed significant divergence among RBP sequences, apparently reflecting their unique interactions with the host and particularly for strains with a type A CWPS. The implications of the genomic architecture of lactococcal P335 phages on serving as a general model for Siphoviridae phages are discussed.


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/fisiología , Lactococcus lactis/virología , Bacteriófagos/metabolismo , Calcio/metabolismo , Variación Genética , Genómica , Especificidad del Huésped/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
14.
Appl Environ Microbiol ; 83(5)2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28039135

RESUMEN

Bacteriophages are the main cause of fermentation failures in dairy plants. The majority of Streptococcus thermophilus phages can be divided into either cos- or pac-type phages and are additionally characterized by examining the V2 region of their antireceptors. We screened a large number of S. thermophilus phages from the Chr. Hansen A/S collection, using PCR specific for the cos- or pac-type phages, as well as for the V2 antireceptor region. Three phages did not produce positive results with the assays. Analysis of phage morphologies indicated that two of these phages, CHPC577 and CHPC926, had shorter tails than the traditional S. thermophilus phages. The third phage, CHPC1151, had a tail size similar to those of the cos- or pac-type phages, but it displayed a different baseplate structure. Sequencing analysis revealed the genetic similarity of CHPC577 and CHPC926 with a subgroup of Lactococcus lactis P335 phages. Phage CHPC1151 was closely related to the atypical S. thermophilus phage 5093, homologous with a nondairy streptococcal prophage. By testing adsorption of the related streptococcal and lactococcal phages to the surface of S. thermophilus and L. lactis strains, we revealed the possibility of cross-interactions. Our data indicated that the use of S. thermophilus together with L. lactis, extensively applied for dairy fermentations, triggered the recombination between phages infecting different bacterial species. A notable diversity among S. thermophilus phage populations requires that a new classification of the group be proposed.IMPORTANCEStreptococcus thermophilus is a component of thermophilic starter cultures commonly used for cheese and yogurt production. Characterizing streptococcal phages, understanding their genetic relationships, and studying their interactions with various hosts are the necessary steps for preventing and controlling phage attacks that occur during dairy fermentations.


Asunto(s)
Recombinación Genética , Fagos de Streptococcus/clasificación , Fagos de Streptococcus/genética , Streptococcus thermophilus/virología , Fagos de Bacillus , Queso/microbiología , Queso/virología , Productos Lácteos Cultivados/microbiología , Productos Lácteos Cultivados/virología , Empaquetamiento del ADN , ADN Viral , Fermentación , Microbiología de Alimentos , Genoma Viral , Lactococcus lactis/virología , Microscopía Electrónica de Transmisión , Filogenia , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Fagos de Streptococcus/aislamiento & purificación , Fagos de Streptococcus/ultraestructura , Proteínas Estructurales Virales/aislamiento & purificación , Yogur/microbiología , Yogur/virología
15.
Appl Environ Microbiol ; 83(19)2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28754704

RESUMEN

Despite being potentially highly useful for characterizing the biodiversity of phages, metagenomic studies are currently not available for dairy bacteriophages, partly due to the lack of a standard procedure for phage extraction. We optimized an extraction method that allows the removal of the bulk protein from whey and milk samples with losses of less than 50% of spiked phages. The protocol was applied to extract phages from whey in order to test the notion that members of Lactococcus lactis 936 (now Sk1virus), P335, c2 (now C2virus) and Leuconostoc phage groups are the most frequently encountered in the dairy environment. The relative abundance and diversity of phages in eight and four whey mixtures from dairies using undefined mesophilic mixed-strain cultures containing Lactococcus lactis subsp. lactis biovar diacetylactis and Leuconostoc species (i.e., DL starter cultures) and defined cultures, respectively, were assessed. Results obtained from transmission electron microscopy and high-throughput sequence analyses revealed the dominance of Lc. lactis 936 phages (order Caudovirales, family Siphoviridae) in dairies using undefined DL starter cultures and Lc. lactis c2 phages (order Caudovirales, family Siphoviridae) in dairies using defined cultures. The 936 and Leuconostoc phages demonstrated limited diversity. Possible coinduction of temperate P335 prophages and satellite phages in one of the whey mixtures was also observed.IMPORTANCE The method optimized in this study could provide an important basis for understanding the dynamics of the phage community (abundance, development, diversity, evolution, etc.) in dairies with different sizes, locations, and production strategies. It may also enable the discovery of previously unknown phages, which is crucial for the development of rapid molecular biology-based methods for phage burden surveillance systems. The dominance of only a few phage groups in the dairy environment signifies the depth of knowledge gained over the past decades, which served as the basis for designing current phage control strategies. The presence of a correlation between phages and the type of starter cultures being used in dairies might help to improve the selection and/or design of suitable, custom, and cost-efficient phage control strategies.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Leche/virología , Siphoviridae/aislamiento & purificación , Suero Lácteo/virología , Animales , Bacteriófagos/clasificación , Bacteriófagos/genética , Bacteriófagos/ultraestructura , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Proyectos Piloto , Siphoviridae/clasificación , Siphoviridae/genética , Siphoviridae/ultraestructura
16.
Mol Microbiol ; 98(3): 535-52, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26193959

RESUMEN

The genetic switch region of temperate Streptococcus thermophilus phage TP-J34 contains two divergently oriented promoters and several predicted operator sites. It separates lytic cycle-promoting genes from those promoting lysogeny. A polycistronic transcript comprises the genes coding for repressor Crh, metalloproteinase-motif protein Rir and superinfection exclusion lipoprotein Ltp. Weak promoters effecting monocistronic transcripts were localized for ltp and int (encoding integrase) by Northern blot and 5'-RACE-PCR. These transcripts appeared in lysogenic as well as lytic state. A polycistronic transcript comprising genes coh (encoding Cro homolog), ant (encoding putative antirepressor), orf7, orf8 and orf9 was only detected in the lytic state. Four operator sites, of which three were located in the intergenic regions between crh and coh, and one between coh and ant, were identified by competition electromobility shift assays. Cooperative binding of Crh to two operator sites immediately upstream of coh could be demonstrated. Coh was shown to bind to the operator closest to crh only. Oligomerization was proven by cross-linking Crh by glutaraldehyde. Knock-out of rir revealed a key role in prophage induction. Rir and Crh were shown to form a complex in solution and Rir prevented binding of Crh to its operator sites.


Asunto(s)
Fagos de Streptococcus/genética , Streptococcus thermophilus/virología , Activación Viral/genética , ADN Viral/genética , ADN Viral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genes Reguladores , Integrasas/metabolismo , Lisogenia/genética , Regiones Operadoras Genéticas , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Proteínas Virales/genética
17.
Appl Environ Microbiol ; 82(17): 5153-65, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27316953

RESUMEN

UNLABELLED: We present the complete genome sequences of four members of a novel group of phages infecting Streptococcus thermophilus, designated here as the 987 group. Members of this phage group appear to have resulted from genetic exchange events, as evidenced by their "hybrid" genomic architecture, exhibiting DNA sequence relatedness to the morphogenesis modules of certain P335 group Lactococcus lactis phages and to the replication modules of S. thermophilus phages. All four identified members of the 987 phage group were shown to elicit adsorption affinity to both their cognate S. thermophilus hosts and a particular L. lactis starter strain. The receptor binding protein of one of these phages (as a representative of this novel group) was defined using an adsorption inhibition assay. The emergence of a novel phage group infecting S. thermophilus highlights the continuous need for phage monitoring and development of new phage control measures. IMPORTANCE: Phage predation of S. thermophilus is an important issue for the dairy industry, where viral contamination can lead to fermentation inefficiency or complete fermentation failure. Genome information and phage-host interaction studies of S. thermophilus phages, particularly those emerging in the marketplace, are an important part of limiting the detrimental impact of these viruses in the dairy environment.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Fagos de Streptococcus/aislamiento & purificación , Streptococcus thermophilus/virología , Bacteriófagos/clasificación , Bacteriófagos/genética , Bacteriófagos/fisiología , Ácido Láctico/metabolismo , Fagos de Streptococcus/clasificación , Fagos de Streptococcus/genética , Fagos de Streptococcus/fisiología , Streptococcus thermophilus/metabolismo
18.
Arch Virol ; 161(8): 2219-26, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27231007

RESUMEN

In this study, we describe the isolation and characterisation of the novel enterobacteria phage CAjan. This phage belongs to the order Caudovirales and the family Siphoviridae. The phage possesses a linear, double-stranded DNA genome consisting of 59,670 bp with a G+C content of 44.7 % and 91 predicted open reading frames (ORFs). Putative functions were assigned to 39 of the ORFs (37.4 %). The phage structural genes were furthermore functionally characterised by LC MS/MS. CAjan, together with Escherichia phage Seurat and Escherichia phage slur01, represent a novel and genetically distinct clade of Siphoviridae phages that could be considered to constitute a new phage genus. Despite limited sequence similarity, the phages in this group share a number of other common features, including genome structure and the presence of queuosine biosynthesis genes.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Heces/virología , Siphoviridae/aislamiento & purificación , Animales , Bacteriófagos/clasificación , Bacteriófagos/genética , Composición de Base , Enterobacteriaceae/virología , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Ratas , Siphoviridae/clasificación , Siphoviridae/genética , Proteínas Virales/genética
19.
J Gen Virol ; 96(Pt 2): 463-477, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25371517

RESUMEN

Bacteriophages and their derivatives are continuously gaining impetus as viable alternative therapeutic agents to control harmful multidrug-resistant bacterial pathogens, particularly in the food industry. The reduced efficacy of conventional antibiotics has resulted in a quest to find novel alternatives in the war against infectious disease. This study describes the full-genome sequence of Cronobacter phage vB_CsaP_Ss1, with subsequent cloning and expression of its endolysin, capable of hydrolysing Gram-negative peptidoglycan. Cronobacter phage vB_CsaP_Ss1 is composed of 42 205 bp of dsDNA with a G+C content of 46.1 mol%. A total of 57 ORFs were identified of which 18 could be assigned a putative function based on similarity to characterized proteins. The genome of Cronobacter phage vB_CsaP_Ss1 showed little similarity to any other bacteriophage genomes available in the database and thus was considered unique. In addition, functional analysis of the predicted endolysin (LysSs1) was also investigated. Zymographic experiments demonstrated the hydrolytic activity of LysSs1 against Gram-negative peptidoglycan, and this endolysin thus represents a novel candidate with potential for use against Gram-negative pathogens.


Asunto(s)
Bacteriófagos/genética , Pared Celular/efectos de los fármacos , Cronobacter/virología , Endopeptidasas/genética , Endopeptidasas/metabolismo , Bacterias Gramnegativas/efectos de los fármacos , Peptidoglicano/metabolismo , Composición de Base , Pared Celular/metabolismo , ADN Viral/química , ADN Viral/genética , Genoma Viral , Hidrólisis , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Control Biológico de Vectores/métodos , Análisis de Secuencia de ADN
20.
Appl Environ Microbiol ; 81(10): 3299-305, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25746988

RESUMEN

Lactococcal bacteriophages represent one of the leading causes of dairy fermentation failure and product inconsistencies. A new member of the lactococcal 949 phage group, named WRP3, was isolated from cheese whey from a Sicilian factory in 2011. The genome sequence of this phage was determined, and it constitutes the largest lactococcal phage genome currently known, at 130,008 bp. Detailed bioinformatic analysis of the genomic region encoding the presumed initiator complex and baseplate of WRP3 has aided in the functional assignment of several open reading frames (ORFs), particularly that for the receptor binding protein required for host recognition. Furthermore, we demonstrate that the 949 phages target cell wall phospho-polysaccharides as their receptors, accounting for the specificity of the interactions of these phages with their lactococcal hosts. Such information may ultimately aid in the identification of strains/strain blends that do not present the necessary saccharidic target for infection by these problematic phages.


Asunto(s)
Bacteriófagos/fisiología , Carbohidratos/química , Lactococcus lactis/virología , Receptores Virales/metabolismo , Bacteriófagos/clasificación , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Metabolismo de los Hidratos de Carbono , Genoma Viral , Especificidad del Huésped , Lactococcus lactis/química , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Receptores Virales/química , Receptores Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA