Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mol Pharmacol ; 103(3): 188-198, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36456191

RESUMEN

A dopamine D2 receptor mutation was recently identified in a family with a novel hyperkinetic movement disorder. That allelic variant D2-I212F is a constitutively active and G protein-biased receptor. We now describe mice engineered using CRISPR-Cas9-mediated gene editing technology to carry the D2-I212F variant. Drd2I212F mice exhibited gait abnormalities resembling those in other mouse models of chorea and/or dystonia and had striatal D2 receptor expression that was decreased approximately 30% per Drd2I212F allele. Electrically evoked inhibitory postsynaptic conductances in midbrain dopamine neurons and striatum from Drd2I212F mice, caused by G protein activation of potassium channels, exhibited slow kinetics (e.g., approximately four- to sixfold slower decay) compared with Drd2 +/+ mice. Current decay initiated by photolytic release of the D2 antagonist sulpiride from CyHQ-sulpiride was also ∼fourfold slower in midbrain slices from Drd2I212F mice than Drd2 +/+ mice. Furthermore, in contrast to Drd2 +/+ mice, in which dopamine is several-fold more potent at neurons in the nucleus accumbens than in the dorsal striatum, reflecting activation of Gα o versus Gα i, dopamine had similar potencies in those two brain regions of Drd2I212F mice. Repeated cocaine treatment, which decreases dopamine potency in the nucleus accumbens of Drd2 +/+ mice, had no effect on dopamine potency in Drd2 I212F mice. The results demonstrate the pathogenicity of the D2-I212F mutation and the utility of this mouse model for investigating the role of pathogenic DRD2 variants in early-onset hyperkinetic movement disorders. SIGNIFICANCE STATEMENT: The first dopamine receptor mutation to cause a movement disorder, D2-I212F, was recently identified. The mutation makes receptor activation of G protein-mediated signaling more efficient. To confirm the pathogenesis of D2-I212F, this study reports that mice carrying this mutation have gait abnormalities consistent with the clinical phenotype. The mutation also profoundly alters D2 receptor expression and function in vivo. This mouse model will be useful for further characterization of the mutant receptor and for evaluation of potential therapeutic drugs.


Asunto(s)
Dopamina , Trastornos del Movimiento , Receptores de Dopamina D2 , Animales , Humanos , Ratones , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Marcha/genética , Hipercinesia , Mutación , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Sulpirida
2.
Mol Pharmacol ; 100(2): 61-64, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34045267

RESUMEN

We previously proposed that the dopamine D2 receptor-interacting protein S100B binds to a putative S100B-binding motif at residues R233-L240 toward the N terminus of the third intracellular loop. We used in vitro pull-down assays with FLAG-tagged fragments of the rat dopamine D2 receptor third intracellular loop (D2-IC3) and in vitro-synthesized S100B to evaluate this hypothesis. Our results indicate that the putative S100B-binding motif is neither necessary nor sufficient for strong binding of S100B to D2-IC3. Instead, two residues at the junction of the fifth membrane-spanning domain and the cytoplasmic extension of that α-helical domain, K211-I212, are required for robust, calcium-sensitive binding of S100B. This is also the approximate location of previously identified determinants for the binding of arrestin and calmodulin. A D2 receptor mutation converting I212 to phenylalanine has been described in patients with a hyperkinetic movement disorder. SIGNIFICANCE STATEMENT: S100B is a small calcium-binding protein that modulates signaling by the dopamine D2 receptor. New data suggest that the previous hypothesis about the involvement of an S100B-binding motif is incorrect, and that an important determinant of S100B binding includes a residue that is mutated in patients with a hyperkinetic movement disorder.


Asunto(s)
Receptores de Dopamina D2/química , Receptores de Dopamina D2/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Secuencias de Aminoácidos , Animales , Sitios de Unión , Modelos Moleculares , Mutación , Dominios Proteicos , Ratas , Subunidad beta de la Proteína de Unión al Calcio S100/genética
3.
Mov Disord ; 36(3): 729-739, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33200438

RESUMEN

BACKGROUND: We describe a 4-generation Dutch pedigree with a unique dominantly inherited clinical phenotype of a combined progressive chorea and cervical dystonia carrying a novel heterozygous dopamine D2 receptor (DRD2) variant. OBJECTIVES: The objective of this study was to identify the genetic cause of the disease and to further investigate the functional consequences of the genetic variant. METHODS: After detailed clinical and neurological examination, whole-exome sequencing was performed. Because a novel variant in the DRD2 gene was found as the likely causative gene defect in our pedigree, we sequenced the DRD2 gene in a cohort of 121 Huntington-like cases with unknown genetic cause (Germany). Moreover, functional characterization of the DRD2 variant included arrestin recruitment, G protein activation, and G protein-mediated inhibition of adenylyl cyclase determined in a cell model, and G protein-regulated inward-rectifying potassium channels measured in midbrain slices of mice. RESULT: We identified a novel heterozygous variant c.634A > T, p.Ile212Phe in exon 5 of DRD2 that cosegregated with the clinical phenotype. Screening of the German cohort did not reveal additional putative disease-causing variants. We demonstrated that the D2S/L -I212 F receptor exhibited increased agonist potency and constitutive activation of G proteins in human embryonic kidney 239 cells as well as significantly reduced arrestin3 recruitment. We further showed that the D2S -I212 F receptor exhibited aberrant receptor function in mouse midbrain slices. CONCLUSIONS: Our results support an association between the novel p.Ile212Phe variant in DRD2, its modified D2 receptor activity, and the hyperkinetic movement disorder reported in the 4-generation pedigree. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Corea , Distonía , Animales , Corea/genética , Mutación con Ganancia de Función , Alemania , Ratones , Fenotipo , Receptores de Dopamina D2/genética
4.
Mol Psychiatry ; 25(9): 2086-2100, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-30120413

RESUMEN

The dopamine (DA) D2 receptor (D2R) is an important target for the treatment of neuropsychiatric disorders such as schizophrenia and Parkinson's disease. However, the development of improved therapeutic strategies has been hampered by our incomplete understanding of this receptor's downstream signaling processes in vivo and how these relate to the desired and undesired effects of drugs. D2R is a G protein-coupled receptor (GPCR) that activates G protein-dependent as well as non-canonical arrestin-dependent signaling pathways. Whether these effector pathways act alone or in concert to facilitate specific D2R-dependent behaviors is unclear. Here, we report on the development of a D2R mutant that recruits arrestin but is devoid of G protein activity. When expressed virally in "indirect pathway" medium spiny neurons (iMSNs) in the ventral striatum of D2R knockout mice, this mutant restored basal locomotor activity and cocaine-induced locomotor activity in a manner indistinguishable from wild-type D2R, indicating that arrestin recruitment can drive locomotion in the absence of D2R-mediated G protein signaling. In contrast, incentive motivation was enhanced only by wild-type D2R, signifying a dissociation in the mechanisms that underlie distinct D2R-dependent behaviors, and opening the door to more targeted therapeutics.


Asunto(s)
Arrestina , Locomoción , Motivación , Receptores de Dopamina D2 , Animales , Cocaína , Cuerpo Estriado/metabolismo , Ratones , Ratones Noqueados , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
5.
J Neurosci ; 38(25): 5774-5787, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29789379

RESUMEN

Cognition and behavior depend on synchronized intrinsic brain activity that is organized into functional networks across the brain. Research has investigated how anatomical connectivity both shapes and is shaped by these networks, but not how anatomical connectivity interacts with intra-areal molecular properties to drive functional connectivity. Here, we present a novel linear model to explain functional connectivity by integrating systematically obtained measurements of axonal connectivity, gene expression, and resting-state functional connectivity MRI in the mouse brain. The model suggests that functional connectivity arises from both anatomical links and inter-areal similarities in gene expression. By estimating these effects, we identify anatomical modules in which correlated gene expression and anatomical connectivity support functional connectivity. Along with providing evidence that not all genes equally contribute to functional connectivity, this research establishes new insights regarding the biological underpinnings of coordinated brain activity measured by BOLD fMRI.SIGNIFICANCE STATEMENT Efforts at characterizing the functional connectome with fMRI have risen exponentially over the last decade. Yet despite this rise, the biological underpinnings of these functional measurements are still primarily unknown. The current report begins to fill this void by investigating the molecular underpinnings of the functional connectome through an integration of systematically obtained structural information and gene expression data throughout the rodent brain. We find that both white matter connectivity and similarity in regional gene expression relate to resting-state functional connectivity. The current report furthers our understanding of the biological underpinnings of the functional connectome and provides a linear model that can be used to streamline preclinical animal studies of disease.


Asunto(s)
Encéfalo/fisiología , Conectoma , Expresión Génica/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Animales , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Neurobiol Learn Mem ; 133: 265-273, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27423521

RESUMEN

Dopamine signaling is involved in a variety of neurobiological processes that contribute to learning and memory. D1-like dopamine receptors (including D1 and D5 receptors) are thought to be involved in memory and reward processes, but pharmacological approaches have been limited in their ability to distinguish between D1 and D5 receptors. Here, we examine the effects of a specific knockout of D1 receptors in associative learning tasks involving aversive (shock) or appetitive (cocaine) unconditioned stimuli. We find that D1 knockout mice show similar levels of cued and contextual fear conditioning to WT controls following conditioning protocols involving one, two, or four shocks. D1 knockout mice show increased generalization of fear conditioning and extinction across contexts, revealed as increased freezing to a novel context following conditioning and decreased freezing to an extinguished cue during a contextual renewal test. Further, D1 knockout mice show mild enhancements in extinction following an injection of SKF81297, a D1/D5 receptor agonist, suggesting a role for D5 receptors in extinction enhancements induced by nonspecific pharmacological agonists. Finally, although D1 knockout mice show decreased locomotion induced by cocaine, they are able to form a cocaine-induced conditioned place preference. We discuss these findings in terms of the role of dopamine D1 receptors in general learning and memory processes.


Asunto(s)
Conducta Animal/fisiología , Condicionamiento Clásico/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Generalización Psicológica/fisiología , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D5/fisiología , Recompensa , Animales , Conducta Animal/efectos de los fármacos , Benzazepinas/administración & dosificación , Benzazepinas/farmacología , Cocaína/administración & dosificación , Cocaína/farmacología , Agonistas de Dopamina/administración & dosificación , Agonistas de Dopamina/farmacología , Inhibidores de Captación de Dopamina/administración & dosificación , Inhibidores de Captación de Dopamina/farmacología , Femenino , Masculino , Ratones , Ratones Noqueados , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D5/agonistas
8.
J Biol Chem ; 289(48): 33663-75, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25336643

RESUMEN

Arrestins mediate desensitization and internalization of G protein-coupled receptors and also direct receptor signaling toward heterotrimeric G protein-independent signaling pathways. We previously identified a four-residue segment (residues 212-215) of the dopamine D2 receptor that is necessary for arrestin binding in an in vitro heterologous expression system but that also impairs receptor expression. We now describe the characterization of additional mutations at that arrestin binding site in the third intracellular loop. Mutating two (residues 214 and 215) or three (residues 213-215) of the four residues to alanine partially decreased agonist-induced recruitment of arrestin3 without altering activation of a G protein. Arrestin-dependent receptor internalization, which requires arrestin binding to ß2-adaptin (the ß2 subunit of the clathrin-associated adaptor protein AP2) and clathrin, was disproportionately affected by the three-residue mutation, with no agonist-induced internalization observed even in the presence of overexpressed arrestin or G protein-coupled receptor kinase 2. The disjunction between arrestin recruitment and internalization could not be explained by alterations in the time course of the receptor-arrestin interaction, the recruitment of G protein-coupled receptor kinase 2, or the receptor-induced interaction between arrestin and ß2-adaptin, suggesting that the mutation impairs a property of the internalization complex that has not yet been identified.


Asunto(s)
Mutación , Receptores de Dopamina D2/metabolismo , Subunidades beta de Complejo de Proteína Adaptadora/genética , Subunidades beta de Complejo de Proteína Adaptadora/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Células HEK293 , Humanos , Estructura Secundaria de Proteína , Transporte de Proteínas/fisiología , Receptores de Dopamina D2/genética
9.
J Neurochem ; 131(4): 418-31, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25041389

RESUMEN

LS-3-134 is a substituted N-phenylpiperazine derivative that has been reported to exhibit: (i) high-affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, (ii) > 100-fold D3 versus D2 dopamine receptor subtype binding selectivity, and (iii) low-affinity binding (Ki  > 5000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin-dependent activation of the adenylyl cyclase inhibition assay, LS-3-134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [(3) H]-labeled LS-3-134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10-15 min at 37°C) and binds with high affinity to both human (Kd  = 0.06 ± 0.01 nM) and rat (Kd  = 0.2 ± 0.02 nM) D3 receptors expressed in HEK293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [(3) H]LS-3-134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies, we propose that [(3) H]LS-3-134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype.


Asunto(s)
Antagonistas de Dopamina/farmacología , Piperazinas/farmacología , Unión Proteica/efectos de los fármacos , Receptores de Dopamina D3/metabolismo , Animales , Benzamidas/farmacología , Unión Competitiva/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Cinética , Ligandos , Núcleo Accumbens/efectos de los fármacos , Ensayo de Unión Radioligante , Ratas , Receptores de Dopamina D2/efectos de los fármacos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/efectos de los fármacos , Receptores de Dopamina D3/genética , Cloruro de Sodio/farmacología , Transfección , Tritio/farmacocinética
10.
Neurobiol Learn Mem ; 108: 65-77, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24269353

RESUMEN

Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks. A parallel and growing literature indicates that dopamine is involved in fear conditioning and extinction. These studies are consistent with long-standing ideas about appetitive-aversive interactions in learning theory and they speak to the general nature of cellular and molecular processes that underlie behavior. We review the behavioral and neurobiological literature showing a role for dopamine in fear conditioning and extinction. At a cellular level, we review dopamine signaling and receptor pharmacology, cellular and molecular events that follow dopamine receptor activation, and brain systems in which dopamine functions. At a behavioral level, we describe theories of learning and dopamine function that could describe the fundamental rules underlying how dopamine modulates different aspects of learning and memory processes.


Asunto(s)
Encéfalo/fisiología , Condicionamiento Psicológico/fisiología , Dopamina/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Recompensa , Animales , Humanos , Aprendizaje/fisiología , Ratones , Ratas
11.
Biochem Pharmacol ; : 116228, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38643909

RESUMEN

Two recently discovered DRD2 mutations, c.634A > T, p.Ile212Phe and c.1121T > G, p.Met374Arg, cause hyperkinetic movement disorders that have overlapping features but apparently differ in severity. The two known carriers of the Met374Arg variant had early childhood disease onset and more severe motor, cognitive, and neuropsychiatric deficits than any known carriers of the Ile212Phe variant, whose symptoms were first apparent in adolescence. Here, we evaluated if differences in the function of the two variants in cultured cells could explain differing pathogenicity. Both variants were expressed less abundantly than the wild type receptor and exhibited loss of agonist-induced arrestin binding, but differences in expression and arrestin binding between the variants were minor. Basal and agonist-induced activation of heterotrimeric Gi/o/z proteins, however, showed clear differences; agonists were generally more potent at Met374Arg than at the Ile212Phe or wild type variants. Furthermore, all Gα subtypes tested were constitutively activated more by Met374Arg than by Ile212Phe. Met374Arg produced greater constitutive inhibition of cyclic AMP accumulation than Ile212Phe or the wild type D2 receptor. Met374Arg and Ile212Phe were more sensitive to thermal inactivation than the wild type D2 receptor, as reported for other constitutively active receptors, but Ile212Phe was affected more than Met374Arg. Additional pharmacological characterization suggested that the mutations differentially affect the shape of the agonist binding pocket and the potency of dopamine, norepinephrine, and tyramine. Molecular dynamics simulations provided a structural rationale for enhanced constitutive activation and agonist potency. Enhanced constitutive and agonist-induced G protein-mediated signaling likely contributes to the pathogenicity of these novel variants.

12.
J Neurosci ; 31(35): 12629-37, 2011 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-21880923

RESUMEN

Mutations in the methyl-CpG-binding protein 2 (MeCP2) result in Rett syndrome (RTT), an X-linked disorder that disrupts neurodevelopment. Girls with RTT exhibit motor deficits similar to those in Parkinson's disease, suggesting defects in the nigrostriatal pathway. This study examined age-dependent changes in dopamine neurons of the substantia nigra (SN) from wild-type, presymptomatic, and symptomatic Mecp2(+/-) mice. Mecp2(+) neurons in the SN in Mecp2(+/-) mice were indistinguishable in morphology, resting conductance, and dopamine current density from neurons in wild-type mice. However, the capacitance, total dendritic length, and resting conductance of Mecp2(-) neurons were less than those of Mecp2(+) neurons as early as 4 weeks after birth, before overt symptoms. These differences were maintained throughout life. In symptomatic Mecp2(+/-) mice, the current induced by activation of D(2) dopamine autoreceptors was significantly less in Mecp2(-) neurons than in Mecp2(+) neurons, although D(2) receptor density was unaltered in Mecp2(+/-) mice. Electrochemical measurements revealed that significantly less dopamine was released after stimulation of striatum in adult Mecp2(+/-) mice compared to wild type. The decrease in size and function of Mecp2(-) neurons observed in adult Mecp2(+/-) mice was recapitulated in dopamine neurons from symptomatic Mecp2(-/y) males. These results show that mutation in Mecp2 results in cell-autonomous defects in the SN early in life and throughout adulthood. Ultimately, dysfunction in terminal dopamine release and D(2) autoreceptor-dependent currents in dopamine neurons from symptomatic females support the idea that decreased dopamine transmission due to heterogeneous Mecp2 expression contributes to the parkinsonian features of RTT in Mecp2(+/-) mice.


Asunto(s)
Cuerpo Estriado/fisiología , Dopamina/metabolismo , Proteína 2 de Unión a Metil-CpG/deficiencia , Vías Nerviosas/fisiología , Neuronas/fisiología , Sustancia Negra/citología , Factores de Edad , Análisis de Varianza , Animales , Benzamidas/farmacocinética , Biofisica , Antagonistas de Dopamina/farmacocinética , Estimulación Eléctrica/métodos , Técnicas Electroquímicas/métodos , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Conducción Nerviosa/efectos de los fármacos , Conducción Nerviosa/genética , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Unión Proteica/efectos de los fármacos , Ensayo de Unión Radioligante , Factores Sexuales , Tritio/farmacocinética
13.
Life Sci ; 294: 120383, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35143827

RESUMEN

AIMS: Small molecule compound tyrphostin A9 (A9), an inhibitor of platelet-derived growth factor (PDGF) receptor, was previously reported by our group to stimulate extracellular signal-regulated kinase 1 (ERK1) and 2 (ERK2) in neuronal cells in a PDGF receptor-irrelevant manner. The study aimed to investigate whether A9 could protect axons in experimental autoimmune encephalomyelitis through activation of ERKs. MAIN METHODS: A9 treatment on the protection on neurite outgrowth in SH-SY5Y neuroblastoma cells and primary substantia nigra neuron cultures from the neurotoxin MPP+ were analyzed. Then, clinical symptoms as well as ERK1/2 activation, axonal protection induction, and the abundance increases of the regeneration biomarker GAP-43 in the CNS in the relapsing-remitting experimental autoimmune encephalomyelitis (EAE) model were verified. KEY FINDINGS: A9 treatment could stimulate neurite outgrowth in SH-SY5Y neuroblastoma cells and protect primary substantia nigra neuron cultures from the neurotoxin MPP+. In the relapsing-remitting EAE model, oral administration of A9 successfully ameliorated clinical symptoms, activated ERK1/2, induced axonal protection, and increased the abundance of the regeneration biomarker GAP-43 in the CNS. Interestingly, gene deficiency of ERK1 or ERK2 disrupted the beneficial effects of A9 in MOG-35-55-induced EAE. SIGNIFICANCE: These results demonstrated that small molecule compounds that stimulate persistent ERK activation in vitro and in vivo may be useful in protective or restorative treatment for neurodegenerative diseases.


Asunto(s)
Axones/efectos de los fármacos , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/prevención & control , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Tirfostinos/farmacología , Animales , Encefalomielitis Autoinmune Experimental/etiología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Quinasas MAP Reguladas por Señal Extracelular/genética , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Neuroblastoma/metabolismo , Neuroblastoma/patología , Ratas , Ratas Sprague-Dawley
14.
ACS Chem Neurosci ; 12(11): 1873-1884, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33974399

RESUMEN

A dopamine D2 receptor mutation was recently identified in a family with a novel hyperkinetic movement disorder. Compared to the wild type D2 receptor, the novel allelic variant D2-I212F activates a Gαi1ß1γ2 heterotrimer with higher potency and modestly enhanced basal activity in human embryonic kidney (HEK) 293 cells and has decreased capacity to recruit arrestin3. We now report that omitting overexpressed G protein-coupled receptor kinase-2 (GRK2) decreased the potency and efficacy of quinpirole for arrestin recruitment. The relative efficacy of quinpirole for arrestin recruitment to D2-I212F compared to D2-WT was considerably lower without overexpressed GRK2 than with added GRK2. D2-I212F exhibited higher basal activation of GαoA than Gαi1 but little or no increase in the potency of quinpirole relative to D2-WT. Other signs of D2-I212F constitutive activity for G protein-mediated signaling, in addition to basal activation of Gαi/o, were enhanced basal inhibition of forskolin-stimulated cyclic AMP accumulation that was reversed by the inverse agonists sulpiride and spiperone and a ∼4-fold increase in the apparent affinity of D2-I212F for quinpirole, determined from competition binding assays. In mouse midbrain slices, inhibition of tonic current by the inverse agonist sulpiride in dopamine neurons expressing D2-I212F was consistent with our hypothesis of enhanced constitutive activity and sensitivity to dopamine relative to D2-WT. Molecular dynamics simulations with D2 receptor models suggested that an ionic lock between the cytoplasmic ends of the third and sixth α-helices that constrains many G protein-coupled receptors in an inactive conformation spontaneously breaks in D2-I212F. Overall, these results confirm that D2-I212F is a constitutively active and signaling-biased D2 receptor mutant and also suggest that the effect of the likely pathogenic variant in a given brain region will depend on the nature of G protein and GRK expression.


Asunto(s)
Receptores de Dopamina D2 , Transducción de Señal , Animales , AMP Cíclico , Agonistas de Dopamina/farmacología , Células HEK293 , Humanos , Ratones , Quinpirol/farmacología , Receptores de Dopamina D2/genética
15.
Neuron ; 52(5): 897-909, 2006 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-17145509

RESUMEN

Dopamine-glutamate interactions in the neostriatum determine psychostimulant action, but the underlying molecular mechanisms remain elusive. Here we found that dopamine stimulation by cocaine enhances a heteroreceptor complex formation between dopamine D2 receptors (D2R) and NMDA receptor NR2B subunits in the neostriatum in vivo. The D2R-NR2B interaction is direct and occurs in the confined postsynaptic density microdomain of excitatory synapses. The enhanced D2R-NR2B interaction disrupts the association of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) with NR2B, reduces NR2B phosphorylation at a CaMKII-sensitive site (Ser1303), and inhibits NMDA receptor-mediated currents in medium-sized striatal neurons. Furthermore, the regulated D2R-NR2B interaction is critical for constructing behavioral responsiveness to cocaine. Our findings here uncover a direct and dynamic D2R-NR2B interaction in striatal neurons in vivo. This type of dopamine-glutamate integration at the receptor level may be responsible for synergistically inhibiting the D2R-mediated circuits in the basal ganglia and fulfilling the stimulative effect of psychostimulants.


Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Receptores de Dopamina D2/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/fisiología , Estimulantes del Sistema Nervioso Central/farmacología , Clonación Molecular , ADN Complementario/biosíntesis , ADN Complementario/genética , Electrofisiología , Ácido Glutámico/fisiología , Inmunoprecipitación , Locomoción/fisiología , Masculino , Neostriado/citología , Neostriado/efectos de los fármacos , Neostriado/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Fosforilación , Unión Proteica , Ratas , Ratas Wistar
16.
Mol Pharmacol ; 75(1): 19-26, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18820126

RESUMEN

Dopamine D(2) and D(3) receptors are similar subtypes with distinct interactions with arrestins; the D(3) receptor mediates less agonist-induced translocation of arrestins than the D(2) receptor. The goals of this study were to compare nonphosphorylated arrestin-binding determinants in the second intracellular domain (IC2) of the D(2) and D(3) receptors to identify residues that contribute to the differential binding of arrestin to the subtypes. Arrestin 3 bound to glutathione transferase (GST) fusion proteins of the D(2) receptor IC2 more avidly than to the D(3) receptor IC2. Mutagenesis of the fusion proteins identified a residue at the C terminus of IC2, Lys149, that was important for the preferential binding of arrestin 3 to D(2)-IC2; arrestin binding to D(2)-IC2-K149C was greatly decreased compared with wild-type D(2)-IC2, whereas binding to the reciprocal mutant D(3)-IC2-C147K was enhanced compared with wild-type D(3)-IC2. Mutating this lysine in the full-length D(2) receptor to cysteine decreased the ability of the D(2) receptor to mediate agonist-induced arrestin 3 translocation to the membrane and decreased agonist-induced receptor internalization in human embryonic kidney 293 cells. The reciprocal mutation in the D(3) receptor increased receptor-mediated translocation of arrestin 3 without affecting agonist-induced receptor internalization. G protein-coupled receptor crystal structures suggest that Lys149, at the junction of IC2 and the fourth membrane-spanning helix, has intramolecular interactions that contribute to maintaining an inactive receptor state. It is suggested that the preferential agonist-induced binding of arrestin3 to the D(2) receptor over the D(3) receptor is due in part to Lys149, which could be exposed as a result of receptor activation.


Asunto(s)
Arrestina/química , Arrestina/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Arrestina/genética , Arrestina/aislamiento & purificación , Sitios de Unión , Fenómenos Biofísicos , Línea Celular , Cisteína/metabolismo , Glutatión Transferasa/metabolismo , Humanos , Enlace de Hidrógeno , Riñón/citología , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas , Receptores de Dopamina D2/química , Receptores de Dopamina D2/genética , Receptores de Dopamina D3/química , Receptores de Dopamina D3/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido
17.
Mol Pharmacol ; 75(1): 113-23, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18809670

RESUMEN

Arrestins mediate G protein-coupled receptor desensitization, internalization, and signaling. Dopamine D(2) and D(3) receptors have similar structures but distinct characteristics of interaction with arrestins. The goals of this study were to compare arrestin-binding determinants in D(2) and D(3) receptors other than phosphorylation sites and to create a D(2) receptor that is deficient in arrestin binding. We first assessed the ability of purified arrestins to bind to glutathione transferase (GST) fusion proteins containing the receptor third intracellular loops (IC3). Arrestin3 bound to IC3 of both D(2) and D(3) receptors, with the affinity and localization of the binding site indistinguishable between the receptor subtypes. Mutagenesis of the GST-IC3 fusion proteins identified an important determinant of the binding of arrestin3 in the N-terminal region of IC3. Alanine mutations of this determinant (IYIV212-215) in the full-length D(2) receptor generated a signaling-biased receptor with intact ligand binding and G-protein coupling and activation, but deficient in receptor-mediated arrestin3 translocation to the membrane, agonist-induced receptor internalization, and agonist-induced desensitization in human embryonic kidney 293 cells. This mutation also decreased arrestin-dependent activation of extracellular signal-regulated kinases. The finding that nonphosphorylated D(2)-IC3 and D(3)-IC3 have similar affinity for arrestin is consistent with previous suggestions that the differential effects of D(2) and D(3) receptor activation on membrane translocation of arrestin and receptor internalization are due, at least in part, to differential phosphorylation of the receptors. In addition, these results imply that the sequence IYIV212-215 at the N terminus of IC3 of the D(2) receptor is a key element of the arrestin binding site.


Asunto(s)
Arrestina/metabolismo , Proteínas de Unión al GTP/metabolismo , Mutación , Receptores de Dopamina D2/genética , Transducción de Señal , Animales , Arrestina/aislamiento & purificación , Línea Celular , AMP Cíclico/biosíntesis , Dopamina/farmacología , Quinasas MAP Reguladas por Señal Extracelular/inmunología , Técnica del Anticuerpo Fluorescente Indirecta , Glutatión Transferasa/metabolismo , Peroxidasa de Rábano Silvestre/inmunología , Humanos , Riñón/citología , Unión Proteica , Ensayo de Unión Radioligante , Ratas , Receptores de Dopamina D2/metabolismo , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Sulpirida/metabolismo , Factores de Tiempo , Transfección
18.
Elife ; 82019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31274109

RESUMEN

We identified a locus on mouse chromosome 10 that accounts for 60% of the genetic variance in methamphetamine intake in mice selectively bred for high versus low methamphetamine consumption. We nominated the trace amine-associated receptor 1 gene, Taar1, as the strongest candidate and identified regulation of the mu-opioid receptor 1 gene, Oprm1, as another contributor. This study exploited CRISPR-Cas9 to test the causal role of Taar1 in methamphetamine intake and a genetically-associated thermal response to methamphetamine. The methamphetamine-related traits were rescued, converting them to levels found in methamphetamine-avoiding animals. We used a family of recombinant inbred mouse strains for interval mapping and to examine independent and epistatic effects of Taar1 and Oprm1. Both methamphetamine intake and the thermal response mapped to Taar1 and the independent effect of Taar1 was dependent on genotype at Oprm1. Our findings encourage investigation of the contribution of Taar1 and Oprm1 variants to human methamphetamine addiction.


Asunto(s)
Variación Genética , Metanfetamina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Opioides mu/metabolismo , Animales , Secuencia de Bases , Temperatura Corporal , Cromosomas de los Mamíferos/genética , Femenino , Genotipo , Hipotermia/genética , Masculino , Ratones , Sitios de Carácter Cuantitativo/genética , Receptores Acoplados a Proteínas G/metabolismo
19.
Mol Pharmacol ; 74(2): 371-8, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18445708

RESUMEN

S100B is a calcium-binding protein with both extracellular and intracellular regulatory activities in the mammalian brain. We have identified a novel interaction between S100B and the dopamine D(2) receptor. Our results also suggest that the binding of S100B to the dopamine D(2) receptor enhances receptor signaling. This conclusion is based on the following observations: 1) S100B and the third cytoplasmic loop of the dopamine D(2) receptor interact in a bacterial two-hybrid system and in a poly-histidine pull-down assay; 2) immunoprecipitation of the D(2) receptor also precipitates FLAG-S100B from human embryonic kidney 293 cell homogenates and endogenous S100B from rat neostriatal homogenates; 3) S100B immunoreactivity was detected in cultured neostriatal neurons expressing the D(2) receptor; 4) a putative S100B binding motif is located at residues 233 to 240 of the D(2) receptor, toward the amino terminus of the third cytoplasmic loop. D(3)-IC3, which does not bind S100B, does not contain this motif; and 5) coexpression of S100B in D(2) receptor-expressing 293 cells selectively increased D(2) receptor stimulation of extracellular signal-regulated kinases and inhibition of adenylate cyclase.


Asunto(s)
Factores de Crecimiento Nervioso/metabolismo , Receptores de Dopamina D2/fisiología , Proteínas S100/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/fisiología , Línea Celular , Células Cultivadas , Humanos , Datos de Secuencia Molecular , Factores de Crecimiento Nervioso/fisiología , Ratas , Receptores de Dopamina D2/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100 , Proteínas S100/fisiología , Transducción de Señal/fisiología
20.
Elife ; 62017 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-29154756

RESUMEN

The dopamine D2 receptor has two splice variants, D2S (Short) and D2L (Long). In dopamine neurons, both variants can act as autoreceptors to regulate neuronal excitability and dopamine release, but the roles of each variant are incompletely characterized. In a previous study we used viral receptor expression in D2 receptor knockout mice to show distinct effects of calcium signaling on D2S and D2L autoreceptor function (Gantz et al., 2015). However, the cocaine-induced plasticity of D2 receptor desensitization observed in wild type mice was not recapitulated with this method of receptor expression. Here we use mice with genetic knockouts of either the D2S or D2L variant to investigate cocaine-induced plasticity in D2 receptor signaling. Following a single in vivo cocaine exposure, the desensitization of D2 receptors from neurons expressing only the D2S variant was reduced. This did not occur in D2L-expressing neurons, indicating differential drug-induced plasticity between the variants.


Asunto(s)
Autorreceptores/metabolismo , Cocaína/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/fisiología , Receptores de Dopamina D2/metabolismo , Animales , Ratones , Ratones Noqueados , Unión Proteica , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA