Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 60(49): 3783-3800, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34757726

RESUMEN

CRISPR-Cas systems are RNA-guided nucleases that provide adaptive immune protection in bacteria and archaea against intruding genomic materials. Cas9, a type-II CRISPR effector protein, is widely used for gene editing applications since a single guide RNA can direct Cas9 to cleave specific genomic targets. The conformational changes associated with RNA/DNA binding are being modulated to develop Cas9 variants with reduced off-target cleavage. Previously, we showed that proline substitutions in the arginine-rich bridge helix (BH) of Streptococcus pyogenes Cas9 (SpyCas9-L64P-K65P, SpyCas92Pro) improve target DNA cleavage selectivity. In this study, we establish that kinetic analysis of the cleavage of supercoiled plasmid substrates provides a facile means to analyze the use of two parallel routes for DNA linearization by SpyCas9: (i) nicking by HNH followed by RuvC cleavage (the TS (target strand) pathway) and (ii) nicking by RuvC followed by HNH cleavage (the NTS (nontarget strand) pathway). BH substitutions and DNA mismatches alter the individual rate constants, resulting in changes in the relative use of the two pathways and the production of nicked and linear species within a given pathway. The results reveal coordinated actions between HNH and RuvC to linearize DNA, which is modulated by the integrity of the BH and the position of the mismatch in the substrate, with each condition producing distinct conformational energy landscapes as observed by molecular dynamics simulations. Overall, our results indicate that BH interactions with RNA/DNA enable target DNA discrimination through the differential use of the parallel sequential pathways driven by HNH/RuvC coordination.


Asunto(s)
Proteína 9 Asociada a CRISPR/química , Sistemas CRISPR-Cas , ADN/química , ARN Guía de Kinetoplastida/química , ARN/química , Streptococcus pyogenes/química , Sitios de Unión , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , División del ADN , Expresión Génica , Cinética , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , ARN/genética , ARN/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/genética , Especificidad por Sustrato , Termodinámica
2.
J Biol Chem ; 295(32): 10956-10968, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32513871

RESUMEN

CRISPR-Cas is an adaptive immune system that protects prokaryotes against foreign nucleic acids. Prokaryotes gain immunity by acquiring short pieces of the invading nucleic acid termed prespacers and inserting them into their CRISPR array. In type II-A systems, Cas1 and Cas2 proteins insert prespacers always at the leader-repeat junction of the CRISPR array. Among type II-A CRISPR systems, three distinct groups (G1, G2, and G3) exist according to the extent of DNA sequence conservation at the 3' end of the leader. However, the mechanisms by which these conserved motifs interact with their cognate Cas1 and Cas2 proteins remain unclear. Here, we performed in vitro integration assays, finding that for G1 and G2, the insertion site is recognized through defined mechanisms, at least in members examined to date, whereas G3 exhibits no sequence-specific insertion. G1 first recognized a 12-bp sequence at the leader-repeat junction and performed leader-side insertion before proceeding to spacer-side insertion. G2 recognized the full repeat sequence and could perform independent leader-side or spacer-side insertions, although the leader-side insertion was faster than spacer-side. The prespacer morphology requirements for Cas1-Cas2 varied, with G1 stringently requiring a 5-nucleotide 3' overhang and G2 being able to insert many forms of prespacers with variable efficiencies. These results highlight the intricacy of protein-DNA sequence interactions within the seemingly similar type II-A integration complexes and provide mechanistic insights into prespacer insertion. These interactions can be fine-tuned to expand the Cas1-Cas2 toolset for inserting small DNAs into diverse DNA targets.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Filogenia , Secuencia de Bases , Proteínas Asociadas a CRISPR/metabolismo , ADN/metabolismo , Unión Proteica
4.
IEEE Comput Graph Appl ; 44(3): 114-125, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38127603

RESUMEN

This article presents a visual analytics framework, idMotif, to support domain experts in identifying motifs in protein sequences. A motif is a short sequence of amino acids usually associated with distinct functions of a protein, and identifying similar motifs in protein sequences helps us to predict certain types of disease or infection. idMotif can be used to explore, analyze, and visualize such motifs in protein sequences. We introduce a deep-learning-based method for grouping protein sequences and allow users to discover motif candidates of protein groups based on local explanations of the decision of a deep-learning model. idMotif provides several interactive linked views for between and within protein cluster/group and sequence analysis. Through a case study and experts' feedback, we demonstrate how the framework helps domain experts analyze protein sequences and motif identification.


Asunto(s)
Secuencias de Aminoácidos , Proteínas , Análisis de Secuencia de Proteína , Análisis de Secuencia de Proteína/métodos , Proteínas/química , Aprendizaje Profundo , Biología Computacional/métodos , Programas Informáticos , Secuencia de Aminoácidos , Gráficos por Computador , Algoritmos , Bases de Datos de Proteínas
5.
CRISPR J ; 6(6): 527-542, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38108519

RESUMEN

To protect against mobile genetic elements (MGEs), some bacteria and archaea have clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) adaptive immune systems. CRISPR RNAs (crRNAs) bound to Cas nucleases hybridize to MGEs based on sequence complementarity to guide the nucleases to cleave the MGEs. This programmable DNA cleavage has been harnessed for gene editing. Safety concerns include off-target and guide RNA (gRNA)-free DNA cleavages, both of which are observed in the Cas nuclease commonly used for gene editing, Streptococcus pyogenes Cas9 (SpyCas9). We developed a SpyCas9 variant (SpyCas9H982A) devoid of gRNA-free DNA cleavage activity that is more selective for on-target cleavage. The H982A substitution in the metal-dependent RuvC active site reduces Mn2+-dependent gRNA-free DNA cleavage by ∼167-fold. Mechanistic molecular dynamics analysis shows that Mn2+, but not Mg2+, produces a gRNA-free DNA cleavage competent state that is disrupted by the H982A substitution. Our study demonstrates the feasibility of modulating cation:protein interactions to engineer safer gene editing tools.


Asunto(s)
División del ADN , Edición Génica , Dominio Catalítico , Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas , Endonucleasas , Streptococcus pyogenes/genética
6.
CRISPR J ; 5(2): 329-340, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35438515

RESUMEN

The RNA-guided Cas9 nuclease from Streptococcus pyogenes has become an important gene-editing tool. However, its intrinsic off-target activity is a major challenge for biomedical applications. Distinct from some reported engineering strategies that specifically target a single domain, we rationally introduced multiple amino acid substitutions across multiple domains in the enzyme to create potential high-fidelity variants, considering the Cas9 specificity is synergistically determined by various domains. We also exploited our previously derived atomic model of activated Cas9 complex structure for guiding new modifications. This approach has led to the identification of the HSC1.2 Cas9 variant with enhanced specificity for DNA cleavage. While the enhanced specificity associated with the HSC1.2 variant appeared to be position-dependent in the in vitro cleavage assays, the frequency of off-target DNA editing with this Cas9 variant is much less than that of the wild-type Cas9 in human cells. The potential mechanisms causing the observed position-dependent effect were investigated through molecular dynamics simulation. Our discoveries establish a solid foundation for leveraging structural and dynamic information to develop Cas9-like enzymes with high specificity in gene editing.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , División del ADN , Endonucleasas/genética , Humanos , ARN/química
7.
Front Cell Infect Microbiol ; 10: 619763, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33585286

RESUMEN

Bacterial and archaeal CRISPR-Cas systems offer adaptive immune protection against foreign mobile genetic elements (MGEs). This function is regulated by sequence specific binding of CRISPR RNA (crRNA) to target DNA/RNA, with an additional requirement of a flanking DNA motif called the protospacer adjacent motif (PAM) in certain CRISPR systems. In this review, we discuss how the same fundamental mechanism of RNA-DNA and/or RNA-RNA complementarity is utilized by bacteria to regulate two distinct functions: to ward off intruding genetic materials and to modulate diverse physiological functions. The best documented examples of alternate functions are bacterial virulence, biofilm formation, adherence, programmed cell death, and quorum sensing. While extensive complementarity between the crRNA and the targeted DNA and/or RNA seems to constitute an efficient phage protection system, partial complementarity seems to be the key for several of the characterized alternate functions. Cas proteins are also involved in sequence-specific and non-specific RNA cleavage and control of transcriptional regulator expression, the mechanisms of which are still elusive. Over the past decade, the mechanisms of RNA-guided targeting and auxiliary functions of several Cas proteins have been transformed into powerful gene editing and biotechnological tools. We provide a synopsis of CRISPR technologies in this review. Even with the abundant mechanistic insights and biotechnology tools that are currently available, the discovery of new and diverse CRISPR types holds promise for future technological innovations, which will pave the way for precision genome medicine.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Archaea/genética , Biotecnología , Edición Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA