RESUMEN
Binding of particulate antigens by antigen-presenting cells is a critical step in immune activation. Previously, we demonstrated that uric acid crystals are potent adjuvants, initiating a robust adaptive immune response. However, the mechanisms of activation are unknown. By using atomic force microscopy as a tool for real-time single-cell activation analysis, we report that uric acid crystals could directly engage cellular membranes, particularly the cholesterol components, with a force substantially stronger than protein-based cellular contacts. Binding of particulate substances activated Syk kinase-dependent signaling in dendritic cells. These observations suggest a mechanism whereby immune cell activation can be triggered by solid structures via membrane lipid alteration without the requirement for specific cell-surface receptors, and a testable hypothesis for crystal-associated arthropathies, inflammation, and adjuvanticity.
Asunto(s)
Membrana Celular/metabolismo , Colesterol/metabolismo , Células Dendríticas/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Ácido Úrico/inmunología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Membrana Celular/inmunología , Células Dendríticas/enzimología , Células Dendríticas/metabolismo , Activación Enzimática , Técnicas de Silenciamiento del Gen , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Microscopía de Fuerza Atómica , Factor 88 de Diferenciación Mieloide/metabolismo , Unión Proteica , Transducción de Señal , Quinasa Syk , Ácido Úrico/metabolismoRESUMEN
Salmonellosis is one of the leading causes of food poisoning worldwide. Controlling bacterial burden is essential to surviving infection. Nucleotide-binding oligomerization domain-like receptors (NLRs), such as NLRC4, induce inflammasome effector functions and play a crucial role in controlling Salmonella infection. Inflammasome-dependent production of IL-1ß recruits additional immune cells to the site of infection, whereas inflammasome-mediated pyroptosis of macrophages releases bacteria for uptake by neutrophils. Neither of these functions is known to directly kill intracellular salmonellae within macrophages. The mechanism, therefore, governing how inflammasomes mediate intracellular bacterial-killing and clearance in host macrophages remains unknown. Here, we show that actin polymerization is required for NLRC4-dependent regulation of intracellular bacterial burden, inflammasome assembly, pyroptosis, and IL-1ß production. NLRC4-induced changes in actin polymerization are physically manifested as increased cellular stiffness, and leads to reduced bacterial uptake, production of antimicrobial molecules, and arrested cellular migration. These processes act in concert to limit bacterial replication in the cell and dissemination in tissues. We show, therefore, a functional link between innate immunity and actin turnover in macrophages that underpins a key host defense mechanism for the control of salmonellosis.
Asunto(s)
Actinas/metabolismo , Inmunidad Innata , Inflamasomas/inmunología , Macrófagos/microbiología , Infecciones por Salmonella/inmunología , Citoesqueleto de Actina/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Células de la Médula Ósea/citología , Proteínas de Unión al Calcio/metabolismo , Caspasa 1/metabolismo , Citoesqueleto/metabolismo , Peróxido de Hidrógeno/química , Inflamación/inmunología , Interleucina-1beta/metabolismo , Macrófagos/citología , Ratones , Ratones Transgénicos , Microscopía Confocal , Neutrófilos/inmunología , Polimerizacion , Especies Reactivas de Oxígeno/metabolismo , Salmonella typhimuriumRESUMEN
Implantation of biomaterials and devices into soft tissues leads to the development of the foreign body response (FBR), which can interfere with implant function and eventually lead to failure. The FBR consists of overlapping acute and persistent inflammatory phases coupled with collagenous encapsulation and currently there are no therapeutic options. Initiation of the FBR involves macrophage activation, proceeding to giant cell formation, fibroblast activation, and collagen matrix deposition. Despite the recognition of this sequence of events, the molecular pathways required for the FBR have not been elucidated. We have identified that the acute inflammatory response to biomaterials requires nucleotide-binding domain and leucine-rich repeat-containing 3 (Nlrp3), apoptosis-associated speck-like protein containing CARD (Asc), and caspase-1, as well as plasma membrane cholesterol, and Syk signaling. Full development of the FBR is dependent on Asc and caspase-1, but not Nlrp3. The common antiinflammatory drug aspirin can reduce inflammasome activation and significantly reduce the FBR. Taken together, these findings expand the role of the inflammasome from one of sensing damage associated molecular patterns (DAMPs) to sensing all particulate matter irrespective of size. In addition, implication of the inflammasome in biomaterial recognition identifies key pathways, which can be targeted to limit the FBR.
Asunto(s)
Materiales Biocompatibles/efectos adversos , Caspasa 1/metabolismo , Proteínas del Citoesqueleto/metabolismo , Reacción a Cuerpo Extraño/patología , Inflamasomas/metabolismo , Inflamación/patología , Administración Oral , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Aspirina/administración & dosificación , Aspirina/efectos adversos , Proteínas Adaptadoras de Señalización CARD , Proteínas de Unión al Calcio/metabolismo , Proteínas Portadoras/metabolismo , Análisis por Conglomerados , Reacción a Cuerpo Extraño/complicaciones , Reacción a Cuerpo Extraño/enzimología , Reacción a Cuerpo Extraño/inmunología , Células Gigantes/efectos de los fármacos , Células Gigantes/inmunología , Células Gigantes/patología , Inflamación/complicaciones , Inflamación/enzimología , Inflamación/inmunología , Interleucina-1beta/biosíntesis , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/patología , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Microesferas , Proteína con Dominio Pirina 3 de la Familia NLR , Polimetil Metacrilato/efectos adversosRESUMEN
Uric acid crystals [monosodium urate (MSU)] have emerged as an important factor for both gouty arthritis and immune regulation. This simple crystalline structure appears to activate innate host defense mechanisms in multiple ways and triggers robust inflammation and immune activation. The recognition mechanisms of MSU following its phase change from soluble uric acid are diverse, involving both protein receptors and non-specific plasma membrane attachment. Upon contact with host cells, MSU induces a set of membrane events that trigger Syk and PI3K activation, phagocytosis, and cytokine production. Having entered the cell, MSU further triggers NALP3 inflammasome activation and induces the production of IL-1 beta, likely inducing a full spectrum of inflammation. This review describes the recognition mechanisms and activation pathways involved in MSU-mediated inflammation and adjuvanticity and hypothesizes that direct membrane binding by solid surfaces, such as MSU, may function as a generic mechanism in tissue responses to particulate and crystalline structures.
Asunto(s)
Artritis Gotosa/inmunología , Inmunidad Innata , Mediadores de Inflamación/inmunología , Transducción de Señal/inmunología , Ácido Úrico/inmunología , Animales , Artritis Gotosa/terapia , Cristalización , HumanosRESUMEN
Devices implanted into the body become encapsulated due to a foreign body reaction. In the central nervous system (CNS), this can lead to loss of functionality in electrodes used to treat disorders. Around CNS implants, glial cells are activated, undergo gliosis and ultimately encapsulate the electrodes. The primary cause of this reaction is unknown. Here we show that the mechanical mismatch between nervous tissue and electrodes activates glial cells. Both primary rat microglial cells and astrocytes responded to increasing the contact stiffness from physiological values (G' â¼ 100 Pa) to shear moduli G' ≥ 10 kPa by changes in morphology and upregulation of inflammatory genes and proteins. Upon implantation of composite foreign bodies into rat brains, foreign body reactions were significantly enhanced around their stiff portions in vivo. Our results indicate that CNS glial cells respond to mechanical cues, and suggest that adapting the surface stiffness of neural implants to that of nervous tissue could minimize adverse reactions and improve biocompatibility.
Asunto(s)
Sistema Nervioso Central/citología , Reacción a Cuerpo Extraño/fisiopatología , Mecanotransducción Celular/fisiología , Neuroglía/citología , Neuroglía/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Astrocitos/fisiología , Western Blotting , Neuroglía/fisiología , Ratas , Ratas Sprague-DawleyRESUMEN
As an approved vaccine adjuvant for use in humans, alum has vast health implications, but, as it is a crystal, questions remain regarding its mechanism. Furthermore, little is known about the target cells, receptors, and signaling pathways engaged by alum. Here we report that, independent of inflammasome and membrane proteins, alum binds dendritic cell (DC) plasma membrane lipids with substantial force. Subsequent lipid sorting activates an abortive phagocytic response that leads to antigen uptake. Such activated DCs, without further association with alum, show high affinity and stable binding with CD4(+) T cells via the adhesion molecules intercellular adhesion molecule-1 (ICAM-1) and lymphocyte function-associated antigen-1 (LFA-1). We propose that alum triggers DC responses by altering membrane lipid structures. This study therefore suggests an unexpected mechanism for how this crystalline structure interacts with the immune system and how the DC plasma membrane may behave as a general sensor for solid structures.
Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Compuestos de Alumbre/administración & dosificación , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Lípidos de la Membrana/inmunología , Lípidos de la Membrana/metabolismo , Adyuvantes Inmunológicos/farmacocinética , Compuestos de Alumbre/farmacocinética , Linfocitos T CD4-Positivos/inmunología , Línea Celular , Células Dendríticas/efectos de los fármacos , Células Dendríticas/ultraestructura , Activación Enzimática/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microscopía Electrónica de Rastreo , Modelos Inmunológicos , Fagocitosis/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/inmunología , Quinasa Syk , Vacunas/administración & dosificaciónRESUMEN
Uric acid crystals, the causative agent of gout, have recently gained widespread attention due to their role as a natural endogenous adjuvant. Uric acid crystals, first sensed extracellularly by membrane lipid alterations, are internalized and subsequently activate the NLRP3 inflammasome. Currently, various aspects of this particular novel pathway are poorly defined. This short review will focus on some recent discoveries regarding this simple crystalline structure and address areas requiring further investigation. The fact that uric acid crystals activate innate host defense mechanisms, triggering robust inflammation and immune activation, may lead to engineering potent adjuvants for future vaccines. Furthermore, the elucidation of uric acid's mechanism of inflammation may lay the foundation for other solid inflammatory structures such as silica, asbestos, and alum.