RESUMEN
Cement and concrete are vital materials used to construct durable habitats and infrastructure that withstand natural and human-caused disasters. Still, concrete cracking imposes enormous repair costs on societies, and excessive cement consumption for repairs contributes to climate change. Therefore, the need for more durable cementitious materials, such as those with self-healing capabilities, has become more urgent. In this review, we present the functioning mechanisms of five different strategies for implementing self-healing capability into cement based materials: (1) autogenous self-healing from ordinary portland cement and supplementary cementitious materials and geopolymers in which defects and cracks are repaired through intrinsic carbonation and crystallization; (2) autonomous self-healing by (a) biomineralization wherein bacteria within the cement produce carbonates, silicates, or phosphates to heal damage, (b) polymer-cement composites in which autonomous self-healing occurs both within the polymer and at the polymer-cement interface, and (c) fibers that inhibit crack propagation, thus allowing autogenous healing mechanisms to be more effective. In all cases, we discuss the self-healing agent and synthesize the state of knowledge on the self-healing mechanism(s). In this review article, the state of computational modeling across nano- to macroscales developed based on experimental data is presented for each self-healing approach. We conclude the review by noting that, although autogenous reactions help repair small cracks, the most fruitful opportunities lay within design strategies for additional components that can migrate into cracks and initiate chemistries that retard crack propagation and generate repair of the cement matrix.
RESUMEN
Proton transfer is critically important to many electrocatalytic reactions, and directed proton delivery could open new avenues for the design of electrocatalysts. However, although this approach has been successful in molecular electrocatalysis, proton transfer has not received the same attention in heterogeneous electrocatalyst design. Here, we report that a metal oxide proton relay can be built within heterogeneous electrocatalyst architectures and improves the kinetics of electrochemical hydrogen evolution and oxidation reactions. The volcano-type relationship between activity enhancement and pKa of amine additives confirms this improvement; we observe maximum rate enhancement when the pKa of a proton relay matches the pH of the electrolyte solution. Density-functional-theory-based reactivity studies reveal a decreased proton transfer energy barrier with a metal oxide proton relay. These findings demonstrate the possibility of controlling the proton delivery and enhancing the reaction kinetics by tuning the chemical properties and structures at heterogeneous interfaces.
RESUMEN
Research interest in single-atom catalysts (SACs) has been continuously increasing. However, the lack of understanding of the dynamic behaviors of SACs during applications hinders catalyst development and mechanistic understanding. Herein, we report on the evolution of active sites over Pd/TiO2-anatase SAC (Pd1/TiO2) in the reverse water-gas shift (rWGS) reaction. Combining kinetics, in situ characterization, and theory, we show that at T ≥ 350 °C, the reduction of TiO2 by H2 alters the coordination environment of Pd, creating Pd sites with partially cleaved Pd-O interfacial bonds and a unique electronic structure that exhibit high intrinsic rWGS activity through the carboxyl pathway. The activation by H2 is accompanied by the partial sintering of single Pd atoms (Pd1) into disordered, flat, â¼1 nm diameter clusters (Pdn). The highly active Pd sites in the new coordination environment under H2 are eliminated by oxidation, which, when performed at a high temperature, also redisperses Pdn and facilitates the reduction of TiO2. In contrast, Pd1 sinters into crystalline, â¼5 nm particles (PdNP) during CO treatment, deactivating Pd1/TiO2. During the rWGS reaction, the two Pd evolution pathways coexist. The activation by H2 dominates, leading to the increasing rate with time-on-stream, and steady-state Pd active sites similar to the ones formed under H2. This work demonstrates how the coordination environment and nuclearity of metal sites on a SAC evolve during catalysis and pretreatments and how their activity is modulated by these behaviors. These insights on SAC dynamics and the structure-function relationship are valuable to mechanistic understanding and catalyst design.
RESUMEN
Single-atom catalysts are often reported to have catalytic properties that surpass those of nanoparticles, while a direct comparison of sites common and different for both is lacking. Here we show that single atoms of Pt-group metals embedded into the surface of Fe3O4 have a greatly enhanced interaction strength with CO2 compared with the Fe3O4 surface. The strong CO2 adsorption on single Rh atoms and corresponding low activation energies lead to 2 orders of magnitude higher conversion rates of CO2 compared to Rh nanoparticles. This high activity of single atoms stems from the partially oxidic state imposed by their coordination to the support. Fe3O4-supported Rh nanoparticles follow the behavior of single atoms for CO2 interaction and reduction, which is attributed to the dominating role of partially oxidic sites at the Fe3O4-Rh interface. Thus, we show a likely common catalytic chemistry for two kinds of materials thought to be different, and we show that single atoms of Pt-group metals on Fe3O4 are especially successful materials for catalyzed reactions that depend primarily upon sites with the metal-O-Fe environment.
RESUMEN
To resolve the fleeting structures of lanthanide Ln3+ aqua ions in solution, we (i) performed the first ab initio molecular dynamics (AIMD) simulations of the entire series of Ln3+ aqua ions in explicit water solvent using pseudopotentials and basis sets recently optimized for lanthanides and (ii) measured the symmetry of the hydrating waters about Ln3+ ions (Nd3+, Dy3+, Er3+, Lu3+) for the first time with extended X-ray absorption fine structure (EXAFS). EXAFS spectra were measured experimentally and generated from AIMD trajectories to directly compare simulation, which concurrently considers the electronic structure and the atomic dynamics in solution, with experiment. We performed a comprehensive evaluation of EXAFS multiple-scattering analysis (up to 6.5 Å) to measure Ln-O distances and angular correlations (i.e., symmetry) and elucidate the molecular geometry of the first hydration shell. This evaluation, in combination with symmetry-dependent L3- and L1-edge spectral analysis, shows that the AIMD simulations remarkably reproduces the experimental EXAFS data. The error in the predicted Ln-O distances is less than 0.07 Å for the later lanthanides, while we observed excellent agreement with predicted distances within experimental uncertainty for the early lanthanides. Our analysis revealed a dynamic, symmetrically disordered first coordination shell, which does not conform to a single molecular geometry for most lanthanides. This work sheds critical light on the highly elusive coordination geometry of the Ln3+ aqua ions.
RESUMEN
The catalytic reduction in carbon dioxide is a crucial step in many chemical industrial reactions, such as methanol synthesis, the reverse water-gas shift reaction, and formic acid synthesis. Here, we investigate the role of bulk hydrogen, where hydrogen atoms are found deep inside a metal surface as opposed to subsurface ones, upon CO2 reduction over a Ni(110) surface using density functional theory and ab initio molecular dynamics simulations. While it has previously been shown that subsurface hydrogen stabilizes CO2 and can aid in overcoming reaction barriers, the role of bulk hydrogen is less studied and thus unknown with regard to CO2 reduction. We find that the presence of bulk hydrogen can significantly alter the electronic structure of the Ni(110) surface, particularly the work function and d-band center, such that CO2 adsorbs more strongly to the surface and is more easily reduced. Our results show an enhanced CO2 dissociation in the presence of bulk hydrogen, shedding light on a hitherto underappreciated mechanistic pathway for CO2 reduction on metal surfaces.
RESUMEN
The hydrogenation of benzaldehyde to benzyl alcohol on carbon-supported metals in water, enabled by an external potential, is markedly promoted by polarization of the functional groups. The presence of polar co-adsorbates, such as substituted phenols, enhances the hydrogenation rate of the aldehyde by two effects, that is, polarizing the carbonyl group and increasing the probability of forming a transition state for H addition. These two effects enable a hydrogenation route, in which phenol acts as a conduit for proton addition, with a higher rate than the direct proton transfer from hydronium ions. The fast hydrogenation enabled by the presence of phenol and applied potential overcompensates for the decrease in coverage of benzaldehyde caused by competitive adsorption. A higher acid strength of the co-adsorbate increases the intensity of interactions and the rates of selective carbonyl reduction.
RESUMEN
Supported single-atom catalysts (SACs) have gained increasing attention for improved catalytic activity and selectivity for industrially relevant reactions. In this study, we explore the hydrogenation of acetylene over single Pt, Ru, Rh, Pd, and Ir atoms supported on the Fe3O4(001) surface using density functional theory calculations. The thermodynamic profile of H diffusion is significantly modified by the type of single metal atoms used, suggesting that H spillover from the single atom dopant to the Fe3O4(001) surface is favored and will likely lead to high H coverages of the functioning catalyst. Correspondingly, as the surface H coverage increases, the important desorption step of ethylene becomes energetically competitive against the detrimental hydrogenation steps of ethylene to ethane. A kinetic model is employed to explore how the activity and selectivity of SACs toward ethylene production change as a function of mass of the catalyst loaded into a flow reactor. Overall, we show that the selectivity of SACs toward ethylene production can be tuned by considering the proper type of metal and controlling the redox state of the support.
RESUMEN
Graphene oxides are promising materials for novel electronic devices or anchoring of the active sites for catalytic applications. Here we focus on understanding the atomic oxygen (AO) binding and mobility on different regions of graphene (Gr) on Ru(0001). Differences in the Gr/Ru lattices result in the superstructure, which offers an array of distinct adsorption sites. We employ scanning tunneling microscopy and density functional theory to map out the chemical identity and stability of prepared AO functionalities in different Gr regions. The AO diffusion is utilized to establish that in the regions that are close to the metal substrate the terminally bonded enolate groups are strongly preferred over bridge-bonded epoxy groups. No oxygen species are observed on the graphene regions that are far from the underlying Ru, indicating their low relative stability. This study provides a clear fundamental basis for understanding the local structural, electronic factors and C-Ru bond strengthening/weakening processes that affect the stability of enolate and epoxy species.
RESUMEN
The chiral-selective formation of 1D polymers from a prochiral molecule, namely, 6,12-dibromochrysene in dependence of the type of metal surface is demonstrated by a combined scanning tunneling microscopy and density functional theory study. Deposition of the chosen molecule on Au(111) held at room temperature leads to the formation of a 2D porous molecular network. Upon annealing at 200 °C, an achiral covalently linked polymer is formed on Au(111). On the other hand, a chiral Cu-coordinated polymer is spontaneously formed upon deposition of the molecules on Cu(111) held at room temperature. Importantly, it is found that the chiral-selectivity determines the possibility of obtaining graphene nanoribbons (GNRs). On Au(111), upon annealing at 350 °C or higher cyclo-dehydrogenation occurs transforming the achiral polymer into a GNR. In contrast, the chiral coordination polymer on Cu(111) cannot be converted into a GNR.
RESUMEN
There are several factors that affect the dynamics of adsorbed hydrogen atoms on a carbon surface. Using density functional calculations we show that coadsorption can be a highly influential factor. The diffusion of hydrogen adsorbed on graphene is explored in the presence of H-containing molecules. Without coadsorbates the diffusion barrier of H on graphene is 0.94 eV, while with water/ammonia it is 0.85/0.12 eV. The low barrier in the case of ammonia is attributed to the formation of a stable intermediate state NH4, while such a stable state is not found in the case of water. In addition, hydrogen fluoride, hydrogen sulfide, arsine, and phosphine were also considered. We found that stronger hydrogen-hydride bonds lead to lower diffusion barriers of H on graphene.
RESUMEN
The on-surface polymerization of 1,3,6,8-tetrabromopyrene (Br4 Py) on Cu(111) and Au(111) surfaces under ultrahigh vacuum conditions was investigated by a combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. Deposition of Br4 Py on Cu(111) held at 300â K resulted in a spontaneous debromination reaction, generating the formation of a branched coordination polymer network stabilized by C-Cu-C bonds. After annealing at 473â K, the C-Cu-C bonds were converted to covalent C-C bonds, leading to the formation of a covalently linked molecular network of short oligomers. In contrast, highly ordered self-assembled two-dimensional (2D) patterns stabilized by both Br-Br halogen and Br-H hydrogen bonds were observed upon deposition of Br4 Py on Au(111) held at 300â K. Subsequent annealing of the sample at 473â K led to a dissociation of the C-Br bonds and the formation of disordered metal-coordinated molecular networks. Further annealing at 573â K resulted in the formation of covalently linked disordered networks. Importantly, we found that the chosen substrate not only plays an important role as catalyst for the Ullmann reaction, but also influences the formation of different types of intermolecular bonds and thus, determines the final polymer network morphology. DFT calculations further support our experimental findings obtained by STM and XPS and add complementary information on the reaction pathway of Br4 Py on the different substrates.
RESUMEN
There is a big debate in the community regarding the role of surface states of hematite in the photoelectrochemical water splitting. Experimental studies on non-catalytic overlayers passivating the hematite surface states claim a favorable reduction in the overpotential for the water splitting reaction. As a first step towards understanding the effect of these overlayers, we have studied the system Ga2O3 overlayers on hematite (0001) surfaces using first principles computations in the PBE+U framework. Our computations suggest that stoichiometric terminations of Ga2O3 overlayers are energetically more favored than the bare surface, at ambient oxygen chemical potentials. Energetics suggest that the overlayers prefer to grow via a layer-plus-island (Stranski-Krastanov) growth mode with a critical layer thickness of 1-2 layers. Thus, a complete wetting of the hematite surface by an overlayer of gallium oxide is thermodynamically favored. We establish that the effect of deposition of the Ga2O3 overlayers on the bare hematite surface is to passivate the surface states for the stoichiometric termination. For the oxygen terminated surface which is the most stable termination under photoelectrochemical conditions, the effect of deposition of the Ga2O3 overlayer is to passivate the hole-trapping surface state.
RESUMEN
Density functional calculations are performed to study the energetic, structural, and electronic properties of graphene and silicene functionalized with hydrogen. Our calculations predict that H atoms bind much more strongly to silicene than to graphene. The adsorbed H atoms tend to cooperatively stabilize each other leading to a two-dimensional nucleation and growth mechanism. The different structural and electronic modifications induced by H in fully functionalized graphene and silicene (known as graphane and silicane) are also explained. Finally, the electronic properties of defective graphane with multiple hydrogen vacancies are investigated. Engineering the vacancies in graphane offers a way to modify the electronic properties of this material.
RESUMEN
Licht et al. (Science, 2014, 345, 637) recently proposed a procedure to synthesize NH3 from N2 and by steam electrolysis in molten hydroxide suspensions of nano-Fe2O3. This highly exciting investigation undoubtedly boosts the hope of the CO2-free and low-cost ammonia industry. To provide insights at the atomistic level into the reduction process of N2, we have carried out a density-functional study on the electrochemical formation of NH3 molecules on hematite(0001) surfaces. By considering associative and dissociative mechanisms, we have identified a reaction path that requires an applied bias of -1.1 V to allow the proton transfer processes to occur downhill. The most energy-demanding step is the addition of the first proton to the adsorbed molecular nitrogen. The computed bias is in good agreement with experimental electrolysis potentials that activate the electric current.
RESUMEN
Extensive first principles calculations are carried out to investigate Au monomers and dimers supported on α-Fe2O3(0001) surfaces in terms of structure optimizations, electronic structure analyses, and ab initio thermodynamics calculations of surface phase diagrams. All computations rely on density functional theory in the generalized gradient approximation (Perdew-Burke-Ernzerhof (PBE)) and account for on-site Coulomb interactions via inclusion of a Hubbard correction (PBE+U). The relative stability of Au monomers/dimers on the stoichiometric termination of α-Fe2O3(0001) decorated with various vacancies (multiple oxygen vacancies, iron vacancy, and mixed iron-oxygen vacancies) has been computed as a function of the oxygen chemical potential. The charge rearrangement induced by Au at the oxide contact is analyzed in detail and discussed. On one hand, ab initio thermodynamics predicts that under O-rich conditions, structures obtained by replacing a surface Fe atom with a Au atom are thermodynamically stable over a wide range of temperatures. On the other hand, the complex of a CO molecule on a Au atom substituting surface Fe atoms is thermodynamically stable only in a much more narrow range of values of the O chemical potential under O-rich conditions. In the case of a Au dimer, under O-rich conditions, supported Au atoms at an O-Fe di-vacancy are more stable. However, upon CO adsorption, the complex of a CO molecule and 2 Au atoms located at a single Fe vacancy is more favorable.
RESUMEN
A density-functional study has been undertaken to investigate the chemical properties of in-plane heterostructures of graphene and hexagonal boron nitride. The interactions of armchair and zigzag linking edges with oxygen are looked at in detail. The results of the calculations indicate that the linking edges are highly reactive to oxygen atoms and predict that oxygen molecules can accordingly be adsorbed dissociatively. Furthermore, because oxygen atoms cooperatively interact with the heterostructures, the process can lead to opening of the linking edges, thus splitting the two materials.
RESUMEN
By using density functional theory calculations at the PBE+U level, we investigated the properties of hematite (0001) surfaces decorated with adatoms/vacancies/substituents. For the most stable surface termination over a large range of oxygen chemical potentials (muO), the vacancy formation and adsorption energies were determined as a function of muO. Under oxygen-rich conditions, all defects are metastable with respect to the ideal surface. Under oxygen-poor conditions, O vacancies and Fe adatoms become stable. Under ambient conditions, all defects are metastable; in the bulk, O vacancies form more easily than Fe vacancies, whereas at the surface the opposite is true. All defects, that is, O and Fe vacancies, Fe and Al adatoms, and Al substituents, induce important modifications to the geometry of the surface in their vicinity. Dissociative adsorption of molecular oxygen is likely to be exothermic on surfaces with Fe/Al adatoms or O vacancies.
RESUMEN
Adopting the theoretical scheme developed by the Nørskov group [see, for example, Nørskov et al., J. Phys. Chem. B 108, 17886 (2004)], we conducted a density functional theory study of photo-driven oxidation processes of water on various terminations of the clean hematite (α-Fe2O3) (0001) surface, explicitly taking into account the strong correlation among the 3d states of iron through the Hubbard U parameter. Six best-known terminations, namely, Fe−Fe−O3− (we call S1), O−Fe−Fe−(S2), O2−Fe−Fe−(S3), O3−Fe−Fe− (S4), Fe−O3−Fe− (S5), and O−Fe−O3−(S6), are first exposed to water, the stability of resulting surfaces is investigated under photoelectrochemical conditions by considering different chemical reactions (and their reaction free energies) that lead to surfaces covered by O atoms or/and OH groups. Assuming that the water splitting reaction is driven by the redox potential for photogenerated holes with respect to the normal hydrogen electrode, UVB, at voltage larger than UVB, most 3-oxygen terminated substrates are stable. These results thus suggest that the surface, hydroxylated in the dark, should release protons under illumination. Considering the surface free energy of all the possible terminations shows that O3S5 and O3S1 are the most thermodynamically stable. While water oxidation process on the former requires an overpotential of 1.22 V, only 0.84 V is needed on the latter.