Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Plant Physiol ; 195(1): 566-579, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38345864

RESUMEN

The formation of multi-pistil flowers reduces the yield and quality in Japanese apricot (Prunus mume). However, the molecular mechanism underlying the formation of multi-pistil flowers remains unknown. In the current study, overexpression of PmKNAT2/6-a, a class I KNOTTED1-like homeobox (KNOX) member, in Arabidopsis (Arabidopsis thaliana) resulted in a multi-pistil phenotype. Analysis of the upstream regulators of PmKNAT2/6-a showed that AGAMOUS-like 24 (PmAGL24) could directly bind to the PmKNAT2/6-a promoter and regulate its expression. PmAGL24 also interacted with Like Heterochromatin Protein 1 (PmLHP1) to recruit lysine trimethylation at position 27 on histone H3 (H3K27me3) to regulate PmKNAT2/6-a expression, which is indirectly involved in multiple pistils formation in Japanese apricot flowers. Our study reveals that the PmAGL24 transcription factor, an upstream regulator of PmKNAT2/6-a, regulates PmKNAT2/6-a expression via direct and indirect pathways and is involved in the formation of multiple pistils in Japanese apricot.


Asunto(s)
Arabidopsis , Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Flores/genética , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Plantas Modificadas Genéticamente , Prunus/genética , Prunus/metabolismo , Prunus armeniaca/genética , Prunus armeniaca/metabolismo , Regiones Promotoras Genéticas/genética
2.
BMC Biol ; 22(1): 184, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39183294

RESUMEN

BACKGROUND: Grafting with dwarf rootstock is an efficient method to control plant height in fruit production. However, the molecular mechanism remains unclear. Our previous study showed that plants with Prunus mume (mume) rootstock exhibited a considerable reduction in plant height, internode length, and number of nodes compared with Prunus persica (peach) rootstock. The present study aimed to investigate the mechanism behind the regulation of plant height by mume rootstocks through transcriptomic and metabolomic analyses with two grafting combinations, 'Longyan/Mume' and 'Longyan/Peach'. RESULTS: There was a significant decrease in brassinolide levels in plants that were grafted onto mume rootstocks. Plant hormone signal transduction and brassinolide production metabolism gene expression also changed significantly. Flavonoid levels, amino acid and fatty acid metabolites, and energy metabolism in dwarf plants decreased. There was a notable upregulation of PmLBD3 gene expression in plant specimens that were subjected to grafting onto mume rootstocks. Auxin signalling cues promoted PmARF3 transcription, which directly controlled this upregulation. Through its binding to PmBAS1 and PmSAUR36a gene promoters, PmLBD3 promoted endogenous brassinolide inactivation and inhibited cell proliferation. CONCLUSIONS: Auxin signalling and brassinolide levels are linked by PmLBD3. Our findings showed that PmLBD3 is a key transcription factor that regulates the balance of hormones through the auxin and brassinolide signalling pathways and causes dwarf plants in stone fruits.


Asunto(s)
Brasinoesteroides , Ácidos Indolacéticos , Proteínas de Plantas , Prunus , Transducción de Señal , Brasinoesteroides/metabolismo , Ácidos Indolacéticos/metabolismo , Prunus/genética , Prunus/metabolismo , Prunus/fisiología , Prunus/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Esteroides Heterocíclicos/metabolismo
3.
Plant Physiol ; 193(1): 466-482, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37204822

RESUMEN

Japanese apricot (Prunus mume Sieb. et Zucc.) is a traditional fruit tree with a long history. Multiple pistils (MP) lead to the formation of multiple fruits, decreasing fruit quality and yield. In this study, the morphology of flowers was observed at 4 stages of pistil development: undifferentiated stage (S1), predifferentiation stage (S2), differentiation stage (S3), and late differentiation stage (S4). In S2 and S3, the expression of PmWUSCHEL (PmWUS) in the MP cultivar was significantly higher than that in the single-pistil (SP) cultivar, and the gene expression of its inhibitor, PmAGAMOUS (PmAG), also showed the same trend, indicating that other regulators participate in the regulation of PmWUS during this period. Chromatin immunoprecipitation-qPCR (ChIP-qPCR) showed that PmAG could bind to the promoter and the locus of PmWUS, and H3K27me3 repressive marks were also detected at these sites. The SP cultivar exhibited an elevated level of DNA methylation in the promoter region of PmWUS, which partially overlapped with the region of histone methylation. This suggests that the regulation of PmWUS involves both transcription factors and epigenetic modifications. Also, the gene expression of Japanese apricot LIKE HETEROCHROMATIN PROTEIN (PmLHP1), an epigenetic regulator, in MP was significantly lower than that in SP in S2 to 3, contrary to the trend in expression of PmWUS. Our results showed that PmAG recruited sufficient PmLHP1 to maintain the level of H3K27me3 on PmWUS during the S2 of pistil development. This recruitment of PmLHP1 by PmAG inhibits the expression of PmWUS at the precise time, leading to the formation of 1 normal pistil primordium.


Asunto(s)
Frutas , Prunus armeniaca , Frutas/genética , Frutas/metabolismo , Prunus armeniaca/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Flores/genética , Flores/metabolismo , Morfogénesis
4.
Plant Cell Environ ; 47(4): 1379-1396, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38221869

RESUMEN

Japanese apricot is an important subtropical deciduous fruit tree in China, widely distributed in different altitude areas. How does it adapt to the different temperature environments in these areas? In this study, we identified a low-temperature transcription factor PmCBF03 on chromosome 7 through adaptive analysis of populations at different altitudes, which has an early termination single nucleotide polymorphism mutation. There were two different types of variation, PmCBF03A type in high-altitude areas and PmCBF03T type in low-altitude areas. PmCBF03A gene increased the survival rate, Fv/Fm values, antioxidant enzyme activity, and expression levels of antioxidant enzyme genes, and reducing electrolyte leakage and accumulation of reactive oxygen species in transgenic Arabidopsis under low temperature and freezing stress. Simultaneously, PmCBF03A gene promoted the dormancy of transgenic Arabidopsis seeds than wild-type. Biochemical analysis demonstrated that PmCBF03A directly bound to the DRE/CRT element in the promoters of the PmCOR413, PmDAM6 and PmABI5 genes, promoting their transcription and enhanced the cold resistance and dormancy of the overexpressing PmCBF03A lines. While PmCBF03T gene is unable to bind to the promoters of PmDAM6 and PmABI5 genes, leading to early release of dormancy to adapt to the problem of insufficient chilling requirement in low-altitude areas.


Asunto(s)
Arabidopsis , Prunus armeniaca , Prunus , Temperatura , Frutas , Altitud , Prunus/genética , Prunus/metabolismo , Antioxidantes/metabolismo , Arabidopsis/genética
5.
Plant J ; 110(4): 1182-1197, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35277890

RESUMEN

Japanese apricot (Prunus mume) is an attractive fruit tree originating from China, and its cultivation history dates back 7000 years. In this study, we investigated the genetic diversity, population structure, and genetic relationship of Japanese apricots in different regions of China and Japan. The analyses of the genetic variation between wild and cultivated populations improved our understanding of the general mechanisms of domestication and improvement. A total of 146 accessions of Japanese apricot from different geographic locations were sequenced. The genetic diversity of wild and domesticated accessions (3.60 × 10-3 and 3.51 × 10-3 , respectively) from China was high, and the effect of artificial selection pressure on domesticated accessions was small; however, the genetic diversity of artificially bred accessions decreased significantly (2.68 × 10-3 ) compared to domesticated accessions, which had an obvious improvement bottleneck effect. The chloroplast genome results showed that 41 haplotypes were detected, and Japanese apricots from the Yunnan region had the most haplotypes and the highest genetic diversity. The results revealed the dissemination route of Japanese apricot, not only along the Yangtze River basin system (from southwest China to Hunan, Jiangxi, and Anhui, and finally to the Jiangsu, Zhejiang, and Shanghai areas). Additionally, we discovered a second route for Japanese apricot dispersion, which was mostly in the Pearl River basin system, from southwest China to Libo of Guizhou and then to the Guangdong, Fujian, and Taiwan areas. This also showed that Japanese-bred accessions originated from Zhejiang, China. In addition, selective sweep analysis showed that most of the high-impact single nucleotide polymorphisms were identified in genes related to glucose metabolism, aromatic compound metabolism, flowering time, dormancy, and resistance to abiotic stress during the domestication and improvement of Japanese apricot.


Asunto(s)
Prunus armeniaca , Prunus , China , Frutas/química , Genómica , Fitomejoramiento , Prunus/genética , Prunus armeniaca/genética
6.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(2): 287-292, 2023 Mar.
Artículo en Zh | MEDLINE | ID: mdl-36949687

RESUMEN

Objective: To explore the effectiveness of using deep learning network combined Vision Transformer (ViT) and Transformer to identify patients with depressive disorder on the basis of their sleep electroencephalogram (EEG) signals. Methods: The sleep EEG signals of 28 patients with depressive disorder and 37 normal controls were preprocessed. Then, the signals were converted into image format and the feature information on frequency domain and spatial domain was retained. After that, the images were transmitted to the ViT-Transformer coding network for deep learning of the EEG signal characteristics of the rapid eye movement (REM) sleep and non-rapid eye movement (NREM) sleep in patients with depressive disorder and those in normal controls, respectively, and to identify patients with depressive disorder. Results: Based on the ViT-Transformer network, after examining different EEG frequencies, we found that the combination of delta, theta, and beta waves produced better results in identifying depressive disorder. Among the different EEG frequencies, EEG signal features of delta-theta-beta combination waves in REM sleep achieved 92.8% accuracy and 93.8% precision for identifying depression, with the recall rate of patients with depression being 84.7%, and the F0.5 value being 0.917±0.074. When using the delta-theta-beta combination EEG signal features in NREM sleep to identify depressive disorder, the accuracy was 91.7%, the precision was 90.8%, the recall rate was 85.2%, and the F0.5 value was 0.914±0.062. In addition, through visualization of the sleep EEG of different sleep stages for the whole night, it was found that classification errors usually occurred during transition to a different sleep stage. Conclusion: Using the deep learning ViT-Transformer network, we found that the EEG signal features in REM sleep based on delta-theta-beta combination waves showed better effect in identifying depressive disorder.


Asunto(s)
Aprendizaje Profundo , Trastorno Depresivo , Humanos , Electroencefalografía/métodos , Sueño REM , Fases del Sueño
7.
BMC Plant Biol ; 22(1): 304, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35751035

RESUMEN

BACKGROUND: Japanese apricot (Prunus mume Sieb. et Zucc.) is popular for both ornamental and processing value, fruit color affects the processing quality, and red pigmentation is the most obvious phenotype associated with fruit color variation in Japanese apricot, mutations in structural genes in the anthocyanin pathway can disrupt the red pigmentation, while the formation mechanism of the red color trait in Japanese apricot is still unclear.  RESULTS: One SNP marker (PmuSNP_27) located within PmUFGT3 gene coding region was found highly polymorphic among 44 different fruit skin color cultivars and relative to anthocyanin biosynthesis in Japanese apricot. Meantime, critical mutations were identified in two alleles of PmUFGT3 in the green-skinned type is inactivated by seven nonsense mutations in the coding region, which leads to seven amino acid substitution, resulting in an inactive UFGT enzyme. Overexpression of the PmUFGT3 allele from red-skinned Japanese apricot in green-skinned fruit lines resulted in greater anthocyanin accumulation in fruit skin. Expression of same allele in an Arabidopsis T-DNA mutant deficient in anthocyanidin activity the accumulation of anthocyanins. In addition, using site-directed mutagenesis, we created a single-base substitution mutation (G to T) of PmUFGT3 isolated from green-skinned cultivar, which caused an E to D amino acid substitution and restored the function of the inactive allele of PmUFGT3 from a green-skinned individual. CONCLUSION: This study confirms the function of PmUFGT3, and provides insight into the mechanism underlying fruit color determination in Japanese apricot, and possible approaches towards genetic engineering of fruit color.


Asunto(s)
Prunus armeniaca , Prunus , Antocianinas/genética , Antocianinas/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Proteínas de Plantas/metabolismo , Prunus/genética , Prunus/metabolismo , Prunus armeniaca/genética , Prunus armeniaca/metabolismo
8.
BMC Plant Biol ; 22(1): 354, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864441

RESUMEN

BACKGROUND: Chloroplast (cp) genomes are generally considered to be conservative and play an important role in population diversity analysis in plants, but the characteristics and diversity of the different germplasm populations in Japanese apricot are still not clear. RESULTS: A total of 146 cp genomes from three groups of wild, domesticated, and bred accessions of Japanese apricot were sequenced in this study. The comparative genome analysis revealed that the 146 cp genomes were divided into 41 types, and ranged in size from 157,886 to 158,167 bp with a similar structure and composition to those of the genus Prunus. However, there were still minor differences in the cp genome that were mainly caused by the contraction and expansion of the IR region, and six types of SSR in which mono-nucleotide repeats were the most dominant type of repeats in the cp genome. The genes rpl33 and psbI, and intergenic regions of start-psbA, rps3-rpl22, and ccsA-ndhD, showed the highest nucleotide polymorphism in the whole cp genome. A total of 325 SNPs were detected in the 146 cp genomes, and more than 70% of the SNPs were in region of large single-copy (LSC). The SNPs and haplotypes in the cp genome indicated that the wild group had higher genetic diversity than the domesticated and bred groups. In addition, among wild populations, Southwest China, including Yunnan, Tibet, and Bijie of Guizhou, had the highest genetic diversity. The genetic relationship of Japanese apricot germplasm resources in different regions showed a degree of correlation with their geographical distribution. CONCLUSION: Comparative analysis of chloroplast genomes of 146 Japanese apricot resources was performed to analyze the used to explore the genetic relationship and genetic diversity among Japanese apricot resources with different geographical distributions, providing some reference for the origin and evolution of Japanese apricot.


Asunto(s)
Genoma del Cloroplasto , Prunus armeniaca , China , Evolución Molecular , Genoma del Cloroplasto/genética , Repeticiones de Microsatélite/genética , Filogenia , Fitomejoramiento , Prunus armeniaca/genética
9.
Mol Psychiatry ; 26(4): 1152-1161, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-31462767

RESUMEN

Different substance dependences have common effects on reward pathway and molecular adaptations, however little is known regarding their shared genetic factors. We aimed to identify the risk genetic variants that are shared for substance dependence (SD). First, promising genome-wide significant loci were identified from 3296 patients (521 alcoholic/1026 heroin/1749 methamphetamine) vs 2859 healthy controls and independently replicated using 1954 patients vs 1904 controls. Second, the functional effects of promising variants on gene expression, addiction characteristics, brain structure (gray and white matter), and addiction behaviors in addiction animal models (chronic administration and self-administration) were assessed. In addition, we assessed the genetic correlation among the three SDs using LD score regression. We identified and replicated three novel loci that were associated with the common risk of heroin, methamphetamine addiction, and alcoholism: ANKS1B rs2133896 (Pmeta = 3.60 × 10-9), AGBL4 rs147247472 (Pmeta = 3.40 × 10-12), and CTNNA2 rs10196867 (Pmeta = 4.73 × 10-9). Rs2133896 in ANKS1B was associated with ANKS1B gene expression and had effects on gray matter of the left calcarine and white matter of the right superior longitudinal fasciculus in heroin dependence. Overexpression of anks1b gene in the ventral tegmental area decreased addiction vulnerability for heroin and methamphetamine in self-administration rat models. Our findings could shed light on the root cause for substance dependence and will be helpful for the development of cost-effective prevention strategies for general addiction disorders.


Asunto(s)
Alcoholismo , Trastornos Relacionados con Anfetaminas , Dependencia de Heroína , Metanfetamina , Alcoholismo/genética , Trastornos Relacionados con Anfetaminas/genética , Animales , Heroína , Dependencia de Heroína/genética , Humanos , Ratas
10.
Hortic Res ; 11(4): uhae103, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38689698

RESUMEN

Prunus zhengheensis, an extremely rare population of apricots, originated in warm South-East China and is an excellent material for genetic breeding. However, most apricots and two related species (P. sibirica, P. mandshurica) are found in the cold northern regions in China and the mechanism of their distribution is still unclear. In addition, the classification status of P. zhengheensis is controversial. Thus, we generated a high-quality haplotype-resolved genome for P. zhengheensis, exploring key genetic variations in its adaptation and the causes of phylogenetic incongruence. We found extensive phylogenetic discordances between the nuclear and organelle phylogenies of P. zhengheensis, which could be explained by incomplete lineage sorting. A 242.22-Mb pan-genome of the Armeniaca section was developed with 13 chromosomal genomes. Importantly, we identified a 566-bp insertion in the promoter of the HSFA1d gene in apricot and showed that the activity of the HSFA1d promoter increased under low temperatures. In addition, HSFA1d overexpression in Arabidopsis thaliana indicated that HSFA1d positively regulated plant growth under chilling. Therefore, we hypothesized that the insertion in the promoter of HSFA1d in apricot improved its low-temperature adaptation, allowing it to thrive in relatively cold locations. The findings help explain the weather adaptability of Armeniaca plants.

11.
Plant Mol Biol ; 83(3): 247-64, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23756818

RESUMEN

Dormancy is one of the most important adaptive mechanisms developed by perennial plants. To reveal the comprehensive mechanism of seasonal bud dormancy at four critical stages in Japanese apricot (Prunus persica), we applied Illumina sequencing to study differentially expressed genes (DEGs) at the transcriptional level. As a result, 19,759, 16,375, 19,749 and 20,800 tag-mapped genes were sequenced from libraries of paradormancy (R1), endodormancy (R2), ecodormancy (R3) and dormancy release (R4) stages based on the P. persica genome. Moreover, 6,199, 5,539, and 5,317 genes were differentially expressed in R1 versus R2, R2 versus R3, and R3 versus R4, respectively. Gene Ontology analysis of dormancy-related genes showed that these were mainly related to the cytoplasm, cytoplasmic part metabolism, intracellular metabolism and membrane-bound organelle metabolism. Pathway-enrichment annotation revealed that highly ranked genes were involved in ribosome pathways and protein processing in the endoplasmic reticulum. The results demonstrated that hormone response genes such as auxin, abscisic acid, ethylene and jasmonic acid, as well as zinc finger family protein genes are possibly involved in seasonal bud dormancy in Japanese apricot. The expression patterns of DEGs were verified using real-time quantitative RT-PCR. These results contribute to further understanding of the mechanism of bud dormancy in Japanese apricot.


Asunto(s)
Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Genoma de Planta , Prunus/genética , Estaciones del Año , Secuencia de Bases , Cartilla de ADN , Regulación de la Expresión Génica de las Plantas , Prunus/crecimiento & desarrollo , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
J Exp Bot ; 64(16): 4953-66, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24014872

RESUMEN

Hormones are closely associated with dormancy in deciduous fruit trees, and gibberellins (GAs) are known to be particularly important. In this study, we observed that GA4 treatment led to earlier bud break in Japanese apricot. To understand better the promoting effect of GA4 on the dormancy release of Japanese apricot flower buds, proteomic and transcriptomic approaches were used to analyse the mechanisms of dormancy release following GA4 treatment, based on two-dimensional gel electrophoresis (2-DE) and digital gene expression (DGE) profiling, respectively. More than 600 highly reproducible protein spots (P<0.05) were detected and, following GA4 treatment, 38 protein spots showed more than a 2-fold difference in expression, and 32 protein spots were confidently identified according to the databases. Compared with water treatment, many proteins that were associated with energy metabolism and oxidation-reduction showed significant changes after GA4 treatment, which might promote dormancy release. We observed that genes at the mRNA level associated with energy metabolism and oxidation-reduction also played an important role in this process. Analysis of the functions of the identified proteins and genes and the related metabolic pathways would provide a comprehensive proteomic and transcriptomic view of the coordination of dormancy release after GA4 treatment in Japanese apricot flower buds.


Asunto(s)
Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteómica/métodos , Prunus/genética , Electroforesis en Gel Bidimensional/métodos , Flores/química , Flores/genética , Flores/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Prunus/química , Prunus/crecimiento & desarrollo , Prunus/metabolismo
13.
Mol Biol Rep ; 40(11): 6485-93, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24062077

RESUMEN

While most Japanese apricot (Prunus mume Sieb. et Zucc.) cultivars display typical S-RNase-based gametophytic self-incompatibility, some self-compatible (SC) cultivars have also been identified. In this study, we confirmed SC of 'Zaohong' through replicated self-pollination tests. Cross-pollination tests showed that SC of 'Zaohong' was caused by a loss of pollen function, so we determined that the S-genotype of 'Zaohong' was S 2 S 15 . Sequence analysis of the S-haplotypes of 'Zaohong' showed no mutations which were likely to alter gene function. Furthermore, expression analysis based on RT-PCR of S-locus genes revealed no differences at the transcript level when compared with 'Xiyeqing', a self-incompatible cultivar with the same S haplotypes. In addition, except for S-locus genes, a new type of F-box gene encoding a previously uncharacterised protein with high sequence similarity (61.03-64.65 %) to Prunus SFB genes was identified. Putative structural regions of PmF-box genes have been described, corresponding to regions in PmSFB alleles, but with some sequence variations. These results suggest that SC in 'Zaohong' occurs in pollen, and that other factors outside the S-locus, including PmF-box genes, might be associated with the loss of function of pollen S genes.


Asunto(s)
Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/genética , Polinización/genética , Prunus/genética , Prunus/metabolismo , Alelos , Secuencia de Aminoácidos , Proteínas F-Box/química , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Especificidad de Órganos/genética , Filogenia , Proteínas de Plantas/química , Polinización/fisiología , Prunus/clasificación , Prunus/fisiología , Alineación de Secuencia , Análisis de Secuencia de ADN
14.
Front Microbiol ; 14: 1203678, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37577447

RESUMEN

Introduction: The relationship between oral and gut microbiota in alcohol dependence (AD) is not well understood, particularly the effects of oral microbiota on the intestinal microbiota. The current study aimed to explore the association between oral and gut microbiota in AD to clarify whether oral microbiota could ectopically colonize into the gut. Methods: 16S rRNA sequence libraries were used to compare oral and gut microbial profiles in persons with AD and healthy controls (HC). Source Tracker and NetShift were used to identify bacteria responsible for ectopic colonization and indicate the driver function of ectopic colonization bacteria. Results: The α-diversity of oral microbiota and intestinal microbiota was significantly decreased in persons with AD (all p < 0.05). Principal coordinate analysis indicated greater similarity between oral and gut microbiota in persons with AD than that in HC, and oral-gut overlaps in microbiota were found for 9 genera in persons with AD relative to only 3 genera in HC. The contribution ratio of oral microbiota to intestinal microbiota composition in AD is 5.26% based on Source Tracker,and the AD with ectopic colonization showed the daily maximum standard drinks, red blood cell counts, hemoglobin content, and PACS scores decreasing (all p < 0.05). Discussion: Results highlight the connection between oral-gut microbiota in AD and suggest novel potential mechanistic possibilities.

15.
Genes (Basel) ; 14(4)2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37107697

RESUMEN

The Knotted1-like Homeobox gene is crucial for plant morphological development and growth. Physicochemical characteristics, phylogenetic relationships, chromosomal localization, cis-acting elements, and tissue-specific expression patterns of the 11 PmKNOX genes found in the Japanese apricot genome in this study were examined. Proteins of 11 PmKNOX were soluble proteins with isoelectric points between 4.29 and 6.53, molecular masses between 15.732 and 44.011 kDa, and amino acid counts between 140 and 430. The identified PmKNOX gene family was split into three subfamilies by jointly constructing the phylogenetic tree of KNOX proteins in Japanese apricot and Arabidopsis thaliana. Combined outcomes of the analyzed conserved motifs and gene structures of the 11 PmKNOX genes from the same subfamily displayed comparable gene structure and motif patterns. The 11 PmKNOX members were distributed across six chromosomes, while two sets of PmKNOX genes were found to be collinear. Analysis of the 2000 bp promoter upstream of the coding region of the PmKNOX gene revealed that most PmKNOX genes might be involved in the physiological metabolism, growth and development processes of plants. The PmKNOX gene expression profile revealed that these genes were expressed at varying levels in different tissues, and most of them were linked to the meristems of leaf and flower buds, suggesting that PmKNOX may be involved in plants' apical meristems. In Arabidopsis thaliana, functional validation of PmKNAT2a and PmKNAT2b revealed that these two genes might be involved in regulating leaf and stem development. In addition to laying the groundwork for future research on the function of these genes, understanding the evolutionary relationships between members of the PmKNOX gene family provides opportunities for future breeding in Japanese apricots.


Asunto(s)
Arabidopsis , Prunus armeniaca , Prunus , Arabidopsis/genética , Prunus/genética , Filogenia , Fitomejoramiento
16.
Front Cell Infect Microbiol ; 13: 1127011, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875518

RESUMEN

Background: Patients with alcohol dependence (AD) can exhibit gut dysbacteria. Dysbacteria may co-occur with disruptions of circadian rhythmicity of the gut flora, which can aggravate AD. Herein, this study aimed to investigate diurnal oscillations of the gut microbiota in AD patients. Methods: Thirty-two patients with AD, based on the Diagnostic and Statistical Manual of Mental Disorders, 4th edition, and 20 healthy subjects were enrolled in this study. Demographic and clinical data were collected by self-report questionnaires. Fecal samples at 7:00 AM, 11:00 AM, 3:00 PM, and 7:00 PM were collected from each subject. 16S rDNA sequencing was conducted. Wilcoxon and Kruskal-Wallis tests were performed to characterize alterations and oscillations of the gut microbiota. Results: We found that ß-diversity of the gut microbiota in AD patients oscillated diurnally compared with healthy subjects (p = 0.01). Additionally, 0.66% of operational taxonomic units oscillated diurnally in AD patients versus 1.68% in healthy subjects. At different taxonomic levels, bacterial abundance oscillated diurnally in both groups, such as Pseudomonas and Prevotella pallens (all p < 0.05). ß-diversity of the gut microbiota in AD patients with high daily alcohol consumption, high-level cravings, short AD durations, and mild withdrawal symptoms oscillated diurnally compared with other AD patients (all p < 0.05). Conclusion: The gut microbiota in AD patients exhibits disruptions of diurnal oscillation, which may provide novel insights into mechanisms of AD and the development of therapeutic strategies.


Asunto(s)
Alcoholismo , Microbioma Gastrointestinal , Humanos , Ritmo Circadiano , ADN Ribosómico , Heces
17.
Transl Psychiatry ; 12(1): 465, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344488

RESUMEN

Generalized anxiety disorder (GAD) and obsessive-compulsive disorder (OCD) had high comorbidity and affected more than 44 million people around the world leading to a huge burden on health and economy. Here, we conducted an epigenome-wide DNA methylation study employing 93 patients with GAD, 65 patients with OCD, and 302 health controls, to explore epigenetic alterations associated with the onset and differences of GAD and OCD. We identified multiple differentially methylated positions (DMPs) and regions (DMRs): three DMP genes included RIOK3 (cg21515243, p = 8.00 × 10-10), DNASE2 (cg09379601, p = 1.10 × 10-9), and PSMB4 (cg01334186, p = 3.70 × 10-7) and two DMR genes USP6NL (p = 4.50 × 10-4) and CPLX1 (p = 6.95 × 10-4) were associated with the onset of GAD and OCD; three DMPs genes included LDLRAP1 (cg21400344, p = 4.40 × 10-12), ACIN1 (cg23712970, p = 2.98×10-11), and SCRT1 (cg25472897, p = 5.60 × 10-11) and three DMR genes WDR19 (p = 3.39 × 10-3), SYCP1 (p = 6.41 × 10-3), and FAM172A (p = 5.74 × 10-3) were associated with the differences between GAD and OCD. Investigation of epigenetic age and chronological age revealed a different epigenetic development trajectory of GAD and OCD. Conclusively, our findings which yielded robust models may aid in distinguishing patients from healthy controls (AUC = 0.90-0.99) or classifying patients with GAD and OCD (AUC = 0.89-0.99), and may power the precision medicine for them.


Asunto(s)
Epigenoma , Trastorno Obsesivo Compulsivo , Humanos , Metilación de ADN , Trastornos de Ansiedad , Células Sanguíneas , China , Proteínas Nucleares , Complejo de la Endopetidasa Proteasomal , Proteínas
18.
Front Psychiatry ; 13: 985948, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159935

RESUMEN

Background: Alcohol dependence (AD) remains one of the major public health concerns. Impulsivity plays a central role in the transfer from recreational alcohol use to dependence and relapse. White matter dysfunction has been implicated in alcohol addiction behaviors and impulsivity. However, little is known about the role of systematic striatal structural connections underlying the mechanism of impulsive traits in AD. Methods: In our study, we used seed-based classification by probabilistic tractography with five target masks of striatal circuits to explore the differences in white matter integrity (fractional anisotropy, FA) in AD male patients (N = 51) and healthy controls (N = 27). We mainly explored the correlation between FA of the striatal circuits and impulsive traits (Barratt Impulsiveness Scale, BIS-11), and the mediation role of impulsivity in white matter integrity and the severity of alcohol dependence. Results: Compared with healthy controls, AD showed much lower FA in the left and right striatum-supplementary motor area (SMA) and left striatum-amygdala. We also found the decreased FA of right striatum-vlPFC was correlated with higher impulsivity. Besides, the relationship between reduced FA of right striatum-vlPFC and severity of dependence could be mediated by impulsivity. Conclusion: In our study, we found disrupted white matter integrity in systematic striatal circuits in AD and the decreased FA of right striatum-vlPFC was correlated with higher impulsivity in AD. Our main findings provide evidence for reduced white matter integrity of systematic striatal circuits and the underlying mechanisms of impulsivity in male AD individuals.

19.
Front Psychiatry ; 13: 837573, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432045

RESUMEN

Background and Objectives: Cue exposure therapy (CET) has been used to reduce alcohol use, but the effect of CET during sleep on alcohol dependence (AD) is unclear. The present study examined the effect of repeated exposure to an olfactory stimulus during non-rapid eye movement (NREM) sleep on cue reactivity and craving in patients with AD. Methods: Thirty-five patients with AD were enrolled according to the Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV). All the subjects were randomly assigned to the experimental or control group. The experimental group was exposed to alcohol odor for 10 min during NREM sleep. The other group (controls) was exposed to water [control stimulus (CtrS)] for 10 min during NREM sleep. Demographic, alcohol-related, and clinical characteristics were collected at baseline. A cue-reactivity test was conducted before and after exposure to evaluate the effect of memory manipulation on acute response to an alcohol stimulus. Results: There were no significant time × group interactions according to the visual analog scale (VAS) score of craving intensity, skin conductance response (SCR), systolic blood pressure (SBP), and diastolic blood pressure (DBP; all p > 0.05). Two-way ANOVA showed significant main effects of time on SCR [F (1,33) = 4.453, p = 0.043], SBP [F (1,33) = 14.532, p = 0.001], DBP [F (1,33) = 8.327, p = 0.007], Craving-VAS [F (1,33) = 1.997, p = 0.167] in two groups. Conclusion: Exposure to olfactory alcohol cues during NREM sleep had no significant effect on alcohol craving in subjects with AD during hospitalization.

20.
Plants (Basel) ; 11(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35893602

RESUMEN

Auxin/indole-3-acetic acid (Aux/IAA) is a transcriptional repressor in the auxin signaling pathway that plays a role in several plant growth and development as well as fruit and embryo development. However, it is unclear what role they play in Japanese apricot (Prunus mume) fruit development and maturity. To investigate the role of Aux/IAA genes in fruit texture, development, and maturity, we comprehensively identified and expressed 19 PmIAA genes, and demonstrated their conserved domains and homology across species. The majority of PmIAA genes are highly responsive and expressed in different hormone treatments. PmIAA2, PmIAA5, PmIAA7, PmIAA10, PmIAA13, PmIAA18, and PmIAA19 showed a substantial increase in expression, suggesting that these genes are involved in fruit growth and maturity. During fruit maturation, alteration in the expression of PmIAA genes in response to 1-Methylcyclopropene (1-MCP) treatment revealed an interaction between auxin and ethylene. The current study investigated the response of Aux/IAA development regulators to auxin during fruit ripening, with the goal of better understanding their potential application in functional genomics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA