Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Malar J ; 22(1): 257, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670357

RESUMEN

BACKGROUND: Thanks to the scale up of malaria control interventions, the malaria burden in Senegal has decreased substantially to the point that the National Malaria Control Programme plans to achieve malaria elimination by 2030. To guide such efforts, measuring and monitoring parasite population evolution and anti-malarial drugs resistance is extremely important. Information on the prevalence of parasite mutations related to drug resistance can provide a first signal of emergence, introduction and selection that can help with refining drug interventions. The aim of this study was to analyse the prevalence of anti-malarial drug resistance-associated markers before and after the implementation of artemisinin-based combination therapy (ACT) from 2005 to 2014 in Dielmo, a model site for malaria intervention studies in Senegal. METHODS: Samples from both malaria patients and Plasmodium falciparum asymptomatic carriers were analysed with high resolution melting (HRM) technique to genotype P. falciparum chloroquine resistance transporter (Pfcrt) gene haplotypes and multidrug-resistant protein 1 (Pfmdr1) gene at codons N86 and Y184. RESULTS: Among the 539 samples analysed, 474, 486, and 511 were successfully genotyped for Pfmdr1 N86, Y184, and Pfcrt, respectively. The prevalence of drug resistance markers was high, particularly during the malaria upsurges. Following the scale-up in bed net distribution, only the mutant (86F-like) variant of Pfmdr1 86 was present while during the malaria upsurges the predominance of two types 86Y-86N (43%) and 86F-like (56%) were observed. Most infections (87%) carried the wild type Y-allele at Pfmdr1 184 during the period of nets scale-up while during the malaria upsurges only 16% of infections had wild type and 79% of infections had mixed (mutant/wild) type. The frequency of the mixed genotypes SVMNT-like_CVMNK and SVMNT-like_CVIET within Pfcrt gene was particularly low during bednet scale up. Their frequency increased significantly (P < 0.001) during the malaria upsurges. CONCLUSION: This data demonstrated the effect of multiple interventions on the dynamics of drug resistance-associated mutations in the main malaria parasite P. falciparum in an endemic village in Senegal. Monitoring drug resistance markers should be conducted periodically to detect threats of emergence or resurgence that could compromise the efficacy of anti-malarial drugs.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Humanos , Senegal , Prevalencia , África Occidental , Cloroquina , Proteínas de Transporte de Membrana
2.
Clin Infect Dis ; 73(12): 2175-2183, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33677477

RESUMEN

BACKGROUND: A detailed understanding of the contribution of the asymptomatic Plasmodium reservoir to the occurrence of clinical malaria at individual and community levels is needed to guide effective elimination interventions. This study investigated the relationship between asymptomatic Plasmodium falciparum carriage and subsequent clinical malaria episodes in the Dielmo and Ndiop villages in Senegal. METHODS: The study used a total of 2792 venous and capillary blood samples obtained from asymptomatic individuals and clinical malaria datasets collected from 2013 to 2016. Mapping, spatial clustering of infections, and risk analysis were performed using georeferenced households. RESULTS: High incidences of clinical malaria episodes were observed to occur predominantly in households of asymptomatic P falciparum carriers. A statistically significant association was found between asymptomatic carriage in a household and subsequent episode of clinical malaria occurring in that household for each individual year (P values were 0.0017, 6 × 10-5, 0.005, and 0.008 for the years 2013, 2014, 2015, and 2016 respectively) and the combined years (P = 8.5 × 10-8), which was not found at the individual level. In both villages, no significant patterns of spatial clustering of P falciparum clinical cases were found, but there was a higher risk of clinical episodes <25 m from asymptomatic individuals in Ndiop attributable to clustering within households. CONCLUSION: The findings provide strong epidemiological evidence linking the asymptomatic P falciparum reservoir to clinical malaria episodes at household scale in Dielmo and Ndiop villagers. This argues for a likely success of a mass testing and treatment intervention to move towards the elimination of malaria in the villages of Dielmo and Ndiop.


Asunto(s)
Malaria Falciparum , Malaria , Plasmodium , Infecciones Asintomáticas/epidemiología , Estudios Transversales , Humanos , Malaria/epidemiología , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Plasmodium falciparum , Prevalencia
3.
Malar J ; 19(1): 117, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32192514

RESUMEN

BACKGROUND: Ongoing efforts to fight Plasmodium falciparum malaria has reduced malaria in many areas, but new tools are needed to monitor further progress, including indicators of decreasing exposure to parasite infection. Sero-surveillance is considered promising to monitor exposure, transmission and immunity. METHODS: IgG responses to three antigen biomarkers were evaluated in a retrospective study involving: (i) surveys of 798 asymptomatic villagers from 2 Senegalese endemic settings conducted before 2002 and after the 2013 intensification of control measures, and (ii) in 105 symptomatic individuals from different settings in Côte d'Ivoire. Response to up to eight P. falciparum antigens, including recombinant MSP1p9 antigen and LSA141 peptide, were analysed using multiplex technology and responses to whole P. falciparum schizont extract (SE, local strain adapted to culture) were measured by ELISA. RESULTS: MSP1p9 and LSA141 IgG responses were shown to be relevant indicators monitoring immune status in the different study sites both from Côte d'Ivoire and Senegal. Between 2002 and 2013, individuals participating in both studies showed higher decline of sero-positivity in young (< 15 years: range 12% to 50%) than older (> 15 years: no decline to 15%) individuals from Dielmo and Ndiop. A mathematical sero-catalytic model from the complete Dielmo/Ndiop survey was used to reconstruct declining levels of sero-positivity in more detail, demonstrating that anti-SE seroprevalence levels most accurately reflected malaria exposure in the two villages. CONCLUSION: For standard screening of population immune status at sites envisaging elimination, the use of ELISA-based assays targeting selected antigens can contribute to provide important epidemiologic surveillance data to aid malaria control programmes.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Malaria Falciparum/diagnóstico , Malaria Falciparum/prevención & control , Adolescente , Adulto , Anciano , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/clasificación , Infecciones Asintomáticas/epidemiología , Biomarcadores/sangre , Niño , Preescolar , Côte d'Ivoire/epidemiología , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Lactante , Estudios Longitudinales , Malaria Falciparum/epidemiología , Tamizaje Masivo/estadística & datos numéricos , Persona de Mediana Edad , Estudios Retrospectivos , Estudios Seroepidemiológicos , Adulto Joven
4.
Malar J ; 18(1): 48, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30791901

RESUMEN

BACKGROUND: Malaria is a leading cause of mortality and morbidity in tropical countries, especially in sub-Saharan Africa. In Senegal, a control plan implemented in the beginning of the 2000s has enabled a substantial reduction of mortality and morbidity due to malaria. However, eradication of malaria requires a vaccine that protects against Plasmodium falciparum the deadliest species of the parasite that causes this disease. Plasmodium falciparum is characterized by an extensive genetic diversity that makes vaccine development challenging. In this study, the diversity of P. falciparum isolates was analysed from asymptomatic children residing in the district of Toubacouta, Senegal. METHODS: A nested PCR approach was used to perform genotyping of the msp-1 and msp-2 loci in samples from 87 asymptomatic children infected with P. falciparum, collected during a cross sectional survey in November and December 2010. Parasite densities in blood samples were determined by microscopic examination and statistical analyses were used to identify association of parasite genotype and parasitaemia. RESULTS: Genotyping was successful in 84/87 and 82/87 samples for msp-1 and msp-2, respectively. A strong genetic diversity was found with a total of 15 and 21 different alleles identified for msp-1 and msp-2, respectively. RO33 was the most frequent allelic family of msp-1 followed by MAD20, then by K1. Regarding msp-2 allelic families, 3D7 was more common than FC27. Multiple infections were predominant, since 69% and 89% of the samples genotyped for msp-1 and msp-2 showed more than one clone of P. falciparum with complexity of infection (COI) of 2.5 and 4.7, respectively. Expected heterozygosity (HE) was 0.57 and 0.55 for msp-1 and msp-2, respectively. Interestingly, polyclonal infections were significantly associated with higher parasitaemia. CONCLUSIONS: The strong genetic diversity of P. falciparum clones and the association of polyclonal infection with high parasitaemia call for a multi-allelic approach in the design of vaccine candidates for efficient malaria eradication.


Asunto(s)
Infecciones Asintomáticas , Variación Genética , Genotipo , Malaria Falciparum/parasitología , Parasitemia/parasitología , Plasmodium falciparum/clasificación , Plasmodium falciparum/genética , Animales , Antígenos de Protozoos/genética , Niño , Preescolar , Coinfección/parasitología , Estudios Transversales , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Microscopía , Carga de Parásitos , Reacción en Cadena de la Polimerasa , Senegal
5.
J Infect Dis ; 217(4): 622-627, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29325146

RESUMEN

Dramatic changes in transmission intensity can impact Plasmodium population diversity. Using samples from 2 distant time-points in the Dielmo/Ndiop longitudinal cohorts from Senegal, we applied a molecular barcode tool to detect changes in parasite genotypes and complexity of infection that corresponded to changes in transmission intensity. We observed a striking statistically significant difference in genetic diversity between the 2 parasite populations. Furthermore, we identified a genotype in Dielmo and Ndiop previously observed in Thiès, potentially implicating imported malaria. This genetic surveillance study validates the molecular barcode as a tool to assess parasite population diversity changes and track parasite genotypes.


Asunto(s)
Genética de Población , Genotipo , Malaria/parasitología , Plasmodium/clasificación , Plasmodium/genética , Adolescente , Adulto , Niño , Preescolar , Código de Barras del ADN Taxonómico , Femenino , Genoma de Protozoos , Humanos , Lactante , Estudios Longitudinales , Masculino , Plasmodium/aislamiento & purificación , Senegal , Adulto Joven
7.
Malar J ; 16(1): 497, 2017 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-29284488

RESUMEN

BACKGROUND: Malaria in Senegal is due essentially to infections by Plasmodium falciparum and, to a lesser extent to Plasmodium malariae and Plasmodium ovale. By the use of molecular methods, detection of Plasmodium vivax has been recently reported in the region of Kedougou, raising the question of appraisal of its potential prevalence in this setting. METHODS: A retrospective serological study was carried out using 188 samples taken from 2010 to 2011 in a longitudinal school survey during which 48 asymptomatic children (9-11 years) were recruited. Four collections of samples collected during two successive dry and rainy seasons were analysed for antibody responses to P. vivax and P. falciparum. Recombinant P. falciparum and P. vivax MSP1 antigens and total P. falciparum schizont lysate from African 07/03 strain (adapted to culture) were used for ELISA. Nested PCR amplification was used for molecular detection of P. vivax. RESULTS: A surprising high prevalence of IgG responses against P. vivax MSP1 was evidenced with 53% of positive samples and 58% of the individuals that were found positive to this antigen. There was 77% of responders to P. falciparum outlined by 63% of positive samples. Prevalence of responders did not differ as function of seasons. Levels of antibodies to P. falciparum fluctuated with significant increasing between dry and rainy season (P < 0.05), contrary to responses to P. vivax. There was a significant reciprocal relationship (P < 10-3) between antibody responses to the different antigens, but with weak coefficient of correlation (Rho around 0.3) underlining a variable profile at the individual level. Clear molecular signature was found in positive IgG to P. vivax msp1 samples by PCR. CONCLUSION: This cross-sectional longitudinal study highlights the unexpected high circulation of P. vivax in this endemic area. Sero-immunology and molecular methods are powerful additive tools to identify endemic sites where relevant control measures have to be settled and monitored.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Infecciones Asintomáticas/epidemiología , Malaria Vivax/sangre , Malaria Vivax/epidemiología , Plasmodium vivax/aislamiento & purificación , Niño , Estudios Transversales , ADN Protozoario/genética , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulina G/sangre , Estudios Longitudinales , Malaria Falciparum/sangre , Malaria Falciparum/epidemiología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Malaria Vivax/inmunología , Malaria Vivax/parasitología , Masculino , Plasmodium falciparum/genética , Plasmodium vivax/genética , Plasmodium vivax/inmunología , Reacción en Cadena de la Polimerasa , Prevalencia , Estudios Retrospectivos , Senegal/epidemiología , Pruebas Serológicas
8.
Malar J ; 16(1): 283, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28693608

RESUMEN

BACKGROUND: Coordinated scaled-up malaria control interventions have substantially contributed to the dramatic decrease of malaria-related morbidity and mortality in several endemic countries, including Senegal. However, the impacts of a given malaria control intervention on vector and parasite populations, acquired immunity, and disease burden remain very poorly documented largely due to the lack of continuous surveys. This study took advantage of the sera bank established as part of the Dielmo longitudinal project to investigate the dynamics of IgG antibody responses that accompanied the epidemiological changes resulting from malaria control interventions. Schizonts crude extract of a local strain of Plasmodium falciparum (Pfsch07/03) was used in ELISA to measure and compare seroprevalence and magnitude of IgG antibody responses from 2000 to 2012. RESULTS: The prevalence of Pfsch07/03 IgG antibody responses progressively decreased from 97.25% in 2000 to 57.3% in 2012. The prevalence of Pfsch07/03 antibodies categorized between three different age groups (<7, 7-15, and >15 years) revealed increased seroprevalence with age ranging from 47.19 to 62.67 and 89.45%, respectively in (<7, 7-15, and >15 years) old age groups. A marked drop in seroprevalence was observed after 2008 and was significant in the younger (<7 years) and intermediate (7-15 years) age groups, unlike older individuals aged >15 years (p = 1.00). CONCLUSIONS: The study revealed a substantial contribution of all malaria control interventions to the decrease of IgG antibodies responses to Pfsch07/03 throughout prevention of human-mosquitos contacts, or reduction of parasite biomass. The present study demonstrates the wider potential of sero-epidemiological analysis in monitoring changes in malaria transmission resulting from a given malaria control intervention.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Inmunoglobulina G/sangre , Malaria Falciparum/epidemiología , Malaria Falciparum/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antígenos de Protozoos/inmunología , Niño , Preescolar , Control de Enfermedades Transmisibles , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Plasmodium falciparum/inmunología , Prevalencia , Senegal/epidemiología , Estudios Seroepidemiológicos , Adulto Joven
9.
Malar J ; 16(1): 409, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-29020949

RESUMEN

BACKGROUND: Evaluation of local Plasmodium falciparum malaria transmission has been investigated previously using the reversible catalytic model based on prevalence of antibody responses to single antigen to estimate seroconversion rates. High correlations were observed between seroconversion rates and entomological inoculation rates (EIR). However, in this model, the effects of malaria control interventions and clinical episodes on serological measurements were not assessed. This study monitors the use of antibody responses to P. falciparum crude extracts for assessing malaria transmission, compares seroconversion rates estimated from longitudinal data to those derived from cross-sectional surveys and investigates the effects of malaria control interventions on these measures in an area of declining malaria transmission. In addition, the validity of this model was evaluated by comparison with the alternative model. METHODS: Five cross-sectional surveys were carried out at the end of the wet season in Dielmo, a malaria-endemic Senegalese rural area in 2000, 2002, 2008, 2010 and 2012. Antibodies against schizonts crude extract of a local P. falciparum strain adapted to culture (Pf 07/03) were measured by ELISA. Age-specific seroprevalence model was used both for cross-sectional surveys and longitudinal data (combined data of all surveys). RESULTS: A total of 1504 plasma samples obtained through several years follow-up of 350 subjects was used in this study. Seroconversion rates based on P. falciparum schizonts crude extract were estimated for each cross-sectional survey and were found strongly correlated with EIR. High variability between SCRs from cross-sectional and longitudinal surveys was observed. In longitudinal studies, the alternative catalytic reversible model adjusted better with serological data than the catalytic model. Clinical malaria attacks and malaria control interventions were found to have significant effect on seroconversion. DISCUSSION: The results of the study suggested that crude extract was a good serological tool that could be used to assess the level of malaria exposure in areas where malaria transmission is declining. However, additional parameters such as clinical malaria and malaria control interventions must be taken into account for determining serological measurements for more accuracy in transmission assessment.


Asunto(s)
Enfermedades Endémicas , Malaria Falciparum/epidemiología , Malaria Falciparum/transmisión , Plasmodium falciparum/fisiología , Factores de Edad , Anticuerpos Antiprotozoarios/sangre , Estudios Transversales , Femenino , Humanos , Estudios Longitudinales , Masculino , Modelos Teóricos , Prevalencia , Esquizontes/fisiología , Senegal/epidemiología , Estudios Seroepidemiológicos
10.
Malar J ; 15: 155, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26969623

RESUMEN

BACKGROUND: Concurrent malaria and arbovirus infections are common and represent an important public health concern in regions where both diseases are endemic. The present study investigates the genetic diversity and complexity of Plasmodium falciparum infection in concurrent malaria-arbovirus infections in Kedougou region, southeastern Senegal. METHODS: Parasite DNA was extracted from 60 to 27 sera samples collected from P. falciparum isolates of malaria and concurrent malaria-arbovirus infected patients, respectively, and followed by PCR-genotyping targeting the msp-1 (block2) and msp-2 (block3) allelic families. RESULTS: The mean number of genotype per allelic family was comparable between the two groups. K1 was the predominant msp-1 allelic type both in malaria (94.91%) and arbovirus-malaria (92.59%) groups, whereas IC/3D7 was the most prevalent msp-2 allelic type in malaria (94.91%) and arbovirus-malaria (96.29%) groups. Frequencies of msp-1 and msp-2 allelic types were statistically comparable between the two groups (Fisher exact test, P > 0.05) and were not associated with age. FC27 was strikingly the least prevalent in both groups and was absent in children under 5 years of age. The proportions of P. falciparum isolates from malaria-infected patients carrying the three msp-1 allelic types (67.44%) or the two msp-2 allelic types (76.47%) were significantly higher than those from arbovirus-malaria co-infected patients (Exact binomial test, P < 0.05). The multiplicities of infection (MOI) were low and comparable for msp-1 (1.19 vs 1.22) and msp-2 (1.11 vs 1.10), respectively between malaria and arbovirus-malaria groups. CONCLUSION: The study showed no difference in the genetic diversity between P. falciparum isolates from malaria and concurrent malaria-arbovirus infected patients in Kedougou. The MOI was low despite intense malaria transmission in Kedougou. The overall results suggest a limited or no influence of arbovirus infections on P. falciparum diversity and complexity of malaria infection.


Asunto(s)
Infecciones por Arbovirus/complicaciones , Coinfección/parasitología , Variación Genética , Malaria Falciparum/complicaciones , Malaria Falciparum/parasitología , Plasmodium falciparum/clasificación , Plasmodium falciparum/genética , Adolescente , Adulto , Antígenos de Protozoos/genética , Niño , Preescolar , ADN Protozoario/genética , ADN Protozoario/aislamiento & purificación , Femenino , Genotipo , Técnicas de Genotipaje , Humanos , Lactante , Masculino , Proteína 1 de Superficie de Merozoito/genética , Persona de Mediana Edad , Plasmodium falciparum/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Proteínas Protozoarias/genética , Senegal , Adulto Joven
11.
Malar J ; 14: 229, 2015 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-26026312

RESUMEN

BACKGROUND: The standardization of the type of crude Plasmodium falciparum extracts for assays to evaluate the overall anti-blood-stage immune response in humans may be beneficial to malaria pre-elimination programmes. However, there is no consensus on which strain is appropriate for routine analyses. This study aimed to compare the responses of malaria IgG antibodies in serum collections from Dielmo and Ndiop to crude extracts of merozoites and schizonts of local and reference strains of P. falciparum. METHODS: Malaria antibodies were evaluated using serological tests for exposure to three local strains (0703, F15 and F16) and the P. falciparum reference Palo Alto strain (PA). A total of 218 sera collected in 2000 from inhabitants of the villages of Dielmo and Ndiop were used: 142 from Dielmo and 76 from Ndiop. The biological collection was used to evaluate by ELISA the prevalence of IgG antibodies against crude merozoite and schizont extracts. The genetics of the local and reference strains were compared. RESULTS: There was genetic divergence between strains 0703, F15, F16 and PA. IgG responses against local and reference strains correlated well (0.6 to 0.8; p<0.01). Ig G responses were highest to schizont and merozoite extracts from the field strain of P. falciparum 0703 adapted to in vitro culture. Extracts of P. falciparum strain 0703 isolated from a subject in Dielmo was the most widely recognized [91.3% (199/218) and 81.2% (177/218) for schizonts and merozoites, respectively], although the responses were high for merozoites from PA [85.3% (186/218)] the reference strain, and the two strains isolated from subjects living in Dakar: F15 [90.4% (197/218)] and F16 [72.5% (158/218)]. CONCLUSIONS: For serological studies, the local strain provided the most complete picture of exposure to transmission and malaria prevalence in the local context. However, for the standardization of this method by different laboratories, the reference strain appeared to perform sufficiently well to be used for the evaluation of malaria control programmes.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Inmunoglobulina G/sangre , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Ensayo de Inmunoadsorción Enzimática , Humanos , Malaria Falciparum , Merozoítos/inmunología , Plasmodium falciparum/crecimiento & desarrollo , Esquizontes/inmunología , Senegal
12.
Malar J ; 14: 281, 2015 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-26186936

RESUMEN

BACKGROUND: Control efforts towards malaria due to Plasmodium falciparum significantly decreased the incidence of the disease in many endemic countries including Senegal. Surprisingly, in Kedougou (southeastern Senegal) P. falciparum malaria remains highly prevalent and the relative contribution of other Plasmodium species to the global malaria burden is very poorly documented, partly due to the low sensitivity of routine diagnostic tools. Molecular methods offer better estimate of circulating Plasmodium species in a given area. A molecular survey was carried out to document circulating malaria parasites in Kedougou region. METHODS: A total of 263 long-term stored sera obtained from patients presenting with acute febrile illness in Kedougou between July 2009 and July 2013 were used for malaria parasite determination. Sera were withdrawn from a collection established as part of a surveillance programme of arboviruses infections in the region. Plasmodium species were characterized by a nested PCR-based approach targeting the 18S small sub-unit ribosomal RNA genes of Plasmodium spp. RESULTS: Of the 263 sera screened in this study, Plasmodium genomic DNA was amplifiable by nested PCR from 62.35% (164/263) of samples. P. falciparum accounted for the majority of infections either as single in 85.97% (141/164) of Plasmodium-positive samples or mixed with Plasmodium ovale (11.58%, 19/164) or Plasmodium vivax (1.21%, 2/164). All 19 (11.58%) P. ovale-infected patients were mixed with P. falciparum, while no Plasmodium malariae was detected in this survey. Four patients (2.43%) were found to be infected by P. vivax, two of whom were mixed with P. falciparum. P. vivax infections originated from Bandafassi and Ninefesha villages and concerned patients aged 4, 9, 10, and 15 years old, respectively. DNA sequences alignment and phylogenetic analysis demonstrated that sequences from Kedougou corresponded to P. vivax, therefore confirming the presence of P. vivax infections in Senegal. CONCLUSION: The results confirm the high prevalence of P. falciparum in Kedougou and provide the first molecular evidence of P. vivax infections in Senegal. These findings pave the ways for further investigations of P. vivax infections in Senegal and its contribution to the global burden of malaria disease before targeted strategies can be deployed.


Asunto(s)
Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Plasmodium vivax/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , ADN Protozoario/sangre , ADN Protozoario/genética , Femenino , Humanos , Lactante , Malaria/epidemiología , Malaria/parasitología , Masculino , Persona de Mediana Edad , Plasmodium/genética , Reacción en Cadena de la Polimerasa , Estudios Retrospectivos , Senegal/epidemiología , Adulto Joven
13.
Blood ; 119(24): e172-80, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-22517905

RESUMEN

Achievement of malaria elimination requires development of novel strategies interfering with parasite transmission, including targeting the parasite sexual stages (gametocytes). The formation of Plasmodium falciparum gametocytes in the human host takes several days during which immature gametocyte-infected erythrocytes (GIEs) sequester in host tissues. Only mature stage GIEs circulate in the peripheral blood, available to uptake by the Anopheles vector. Mechanisms underlying GIE sequestration and release in circulation are virtually unknown. We show here that mature GIEs are more deformable than immature stages using ektacytometry and microsphiltration methods, and that a switch in cellular deformability in the transition from immature to mature gametocytes is accompanied by the deassociation of parasite-derived STEVOR proteins from the infected erythrocyte membrane. We hypothesize that mechanical retention contributes to sequestration of immature GIEs and that regained deformability of mature gametocytes is associated with their release in the bloodstream and ability to circulate. These processes are proposed to play a key role in P falciparum gametocyte development in the host and to represent novel and unconventional targets for interfering with parasite transmission.


Asunto(s)
Deformación Eritrocítica/fisiología , Eritrocitos/parasitología , Estadios del Ciclo de Vida , Malaria Falciparum/sangre , Malaria Falciparum/transmisión , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/fisiología , Adulto , Animales , Antígenos de Protozoos/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum/ultraestructura , Transporte de Proteínas
14.
Genes (Basel) ; 15(10)2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39457455

RESUMEN

Background/Objectives: Significant progress in malaria control has been achieved through long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), raising hopes for malaria elimination. However, emerging insecticide resistance threatens these gains. This study assessed the susceptibility of Anopheles gambiae s.l. populations to public health insecticides, examined the frequencies of kdr, Ace-1, and N1575Y mutations, and explored their associations with phenotypic resistance in Dielmo and Ndiop, Senegal. Methods: Anopheles larvae collected between September and December 2022 were reared to adulthood. Adult mosquitoes were exposed to discriminating concentrations of various insecticides following WHO guidelines. Knockdown times (KDT50 and KDT95) for pyrethroids were calculated using the Probit model. RT-qPCR detected target-site mutations (kdr: L1014F and L1014S, Ace-1, N1575Y) and assessed correlations with phenotypic resistance. Species-specific PCR identified species within the An. gambiae complex. Results/Conclusions: The populations of Dielmo and Ndiop showed susceptibility to pirimiphos-methyl and bendiocarb, with no Ace-1 mutation detected. Resistance to DDT and pyrethroids was observed. The knockdown times indicated that alphacypermethrin and lambdacyhalothrin were more effective than permethrin and deltamethrin. The L1014F allele was widespread, while L1014S was absent in Ndiop and low in Dielmo. The N1575Y mutation occurred only in populations with L1014F. The L1014S mutation was significantly associated with resistance to lambdacyhalothrin in both villages and to deltamethrin in Ndiop.


Asunto(s)
Anopheles , Resistencia a los Insecticidas , Insecticidas , Malaria , Mutación , Piretrinas , Animales , Resistencia a los Insecticidas/genética , Anopheles/genética , Anopheles/efectos de los fármacos , Senegal , Insecticidas/farmacología , Piretrinas/farmacología , Malaria/transmisión , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Mosquitos Vectores/genética , Mosquitos Vectores/efectos de los fármacos , Nitrilos/farmacología , Control de Mosquitos/métodos , Larva/genética , Larva/efectos de los fármacos , Femenino
15.
Int J Infect Dis ; 147: 107211, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151787

RESUMEN

OBJECTIVES: In low malaria transmission areas, the elimination of the disease has been hampered partly by the existence of a reservoir of subpatent Plasmodium falciparum infections within communities. This reservoir, often undetected, serves as a source of parasites and contributes to ongoing transmission and clinical malaria cases. METHODS: This study, spanning a period of 9 years from June 2014 to December 2022, examined individual variations and long-term subpatent P. falciparum carriage in two matched cohorts of 44 individuals each living in Dielmo village in the Sudanian area of Senegal. Biannual blood samples, collected in June/July and December of each year, underwent P. falciparum diagnosis by quantitative polymerase chain reaction. QGIS and R analytical tools were used to map infections, assess the occurrence and clustering of subpatent and clinical P. falciparum infections, and determine the risk of infection in the vicinity of asymptomatic P. falciparum carriers. RESULTS: The point frequency and long-term P. falciparum carriage were significantly higher among the quantitative polymerase chain reaction (qPCR) positive cohort compared to the negative cohort across the 16 cross-sectional surveys analyzed in this study (19.76% vs 10.99%, P-value <0.001). Asymptomatic carriage events in qPCR-positive group were 18.86 ± 1.72% and significantly greater (P-value = 0.001) than in the qPCR-negative group (11.32 ± 1.32%). The relative risk of P. falciparum infection or clinical malaria calculated with a 95% confidence interval significantly increased in the vicinity of infected individuals and was 1.44 (P-value = 0.53) and 2.64 (P-value = 0.04) when at least one individual in the direct (household) or indirect (block of households) vicinity is infected, respectively. The risk increased to 3.64 (P-value <0.001) if at least 1/5 of individuals in the indirect vicinity were P. falciparum-infected. CONCLUSIONS: The study provides a detailed qualitative and quantitative analysis of the asymptomatic P. falciparum reservoir and its temporal and spatial dynamics within two subgroups of P. falciparum-infected and non-infected individuals in Dielmo village. It identified high-risk populations known as "hotpops" and hotspots that could be targeted by innovative interventions to accelerate the elimination of malaria in Dielmo village.


Asunto(s)
Portador Sano , Malaria Falciparum , Plasmodium falciparum , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/transmisión , Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Senegal/epidemiología , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Masculino , Femenino , Portador Sano/epidemiología , Portador Sano/transmisión , Adulto , Adolescente , Niño , Estudios Transversales , Preescolar , Adulto Joven , Persona de Mediana Edad , Infecciones Asintomáticas/epidemiología , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
EClinicalMedicine ; 67: 102379, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38188691

RESUMEN

Background: Despite significant progress in malaria control over the past twenty years, malaria remains a leading cause of child morbidity and mortality in Tropical Africa. As most patients do not consult any health facility much uncertainty persists about the true burden of the disease and the range of individual differences in susceptibility to malaria. Methods: Over a 25-years period, from 1990 to 2015, the inhabitants of Dielmo village, Senegal, an area of intense malaria transmission, have been monitored daily for their presence in the village and the occurrence of diseases. In case of fever thick blood films were systematically examined through microscopy for malaria parasites and patients received prompt diagnosis and treatment. Findings: We analysed data collected in 111 children and young adults monitored for at least 10 years (mean 17.3 years, maximum 25 years) enrolled either at birth (95 persons) or during the two first years of life. A total of 11,599 episodes of fever were documented, including 5268 malaria attacks. The maximum number of malaria attacks in a single person was 112. Three other persons suffered one hundred or more malaria attacks during follow-up. The minimum number of malaria attacks in a single person was 11. The mean numbers of malaria attacks in children reaching their 4th, 7th, and 10th birthdays were 23.0, 37.7, and 43.6 attacks since birth, respectively. Sixteen children (14.4%) suffered ten or more malaria attacks each year at ages 1-3 years, and six children (5.4%) each year at age 4-6 years. Interpretation: Long-term close monitoring shows that in highly endemic areas the malaria burden is higher than expected. Susceptibility to the disease may vary up to 10-fold, and for most children childhood is an endless history of malaria fever episodes. No other parasitic, bacterial or viral infection in human populations has such an impact on health. Funding: The Pasteur Institutes of Dakar and Paris, the Institut de Recherche pour le Développement, and the French Ministry of Cooperation provided funding.

17.
Sci Rep ; 13(1): 16410, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37775717

RESUMEN

Studying the behaviour and trophic preferences of mosquitoes is an important step in understanding the exposure of vertebrate hosts to vector-borne diseases. In the case of human malaria, transmission increases when mosquitoes feed more on humans than on other animals. Therefore, understanding the spatio-temporal dynamics of vectors and their feeding preferences is essential for improving vector control measures. In this study, we investigated the feeding behaviour of Anopheles mosquitoes at two sites in the Sudanian areas of Senegal where transmission is low following the implementation of vector control measures. Blood-fed mosquitoes were collected monthly from July to November 2022 by pyrethrum spray catches in sleeping rooms of almost all houses in Dielmo and Ndiop villages, and blood meals were identified as from human, bovine, ovine, equine and chicken by ELISA. Species from the An. gambiae complex were identified by PCR. The types and numbers of potential domestic animal hosts were recorded in each village. The Human Blood Index (HBI) and the Manly Selection Ratio (MSR) were calculated to determine whether hosts were selected in proportion to their abundance. Spatio-temporal variation in HBI was examined using the Moran's index. A total of 1251 endophilic Anopheles females were collected in 115 bedrooms, including 864 blood fed females of 6 species. An. arabiensis and An. funestus were predominant in Dielmo and Ndiop, respectively. Of the 864 blood meals tested, 853 gave a single host positive result mainly on bovine, equine, human, ovine and chicken in decreasing order in both villages. Overall, these hosts were not selected in proportion to their abundance. The human host was under-selected, highlighting a marked zoophily for the vectors. Over time and space, the HBI were low with no obvious trend, with higher and lower values observed in each of the five months at different points in each village. These results highlight the zoophilic and exophagic behaviour of malaria vectors. This behaviour is likely to be a consequence of the distribution and use of LLINs in both villages and may increase risk of residual outdoor transmission. This underlines the need to study the feeding host profile of outdoor resting populations and how domestic animals may influence malaria epidemiology in order to tailor effective malaria vector control strategies in the two villages.


Asunto(s)
Anopheles , Malaria , Femenino , Animales , Humanos , Ovinos , Bovinos , Caballos , Malaria/prevención & control , Malaria/veterinaria , Malaria/epidemiología , Mosquitos Vectores , Insectos Vectores , Conducta Alimentaria , Animales Domésticos , Control de Mosquitos/métodos
18.
Front Immunol ; 13: 1009252, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211335

RESUMEN

Background: Erythrocyte invasion by P. falciparum involves functionally overlapping interactions between the parasite's ligands and the erythrocyte surface receptors. While some P. falciparum isolates necessarily engage the sialic acid (SA) moieties of the erythrocytes during the invasion, others use ligands whose binding is independent of SA for successful invasion. Deciphering the major pathway used by P. falciparum clinical isolates represent a key step toward developing an efficient blood stage malaria vaccine. Methods: We collected a total of 156 malaria-infected samples from Ghanaian children aged 2 to 14 years and used a two-color flow cytometry-based invasion assay to assess the invasion phenotype diversity of Ghanaian P. falciparum clinical isolates. Anti-human CR1 antibodies were used to determine the relative contribution of the PfRh4-CR1 interaction in the parasites invasion phenotype and RT-qPCR was used to assess the expression levels of key invasion-related ligands. Results: Our findings show no clear association between demographic or clinical data and existing reports on the malaria transmission intensity. The complete invasion data obtained for 156 isolates, showed the predominance of SA-independent pathways in Ghanaian clinical isolates. Isolates from Hohoe and Navrongo had the highest diversity in invasion profile. Our data also confirmed that the PfRh4-CR1 mediated alternative pathway is important in Ghanaian clinical isolates. Furthermore, the transcript levels of ten invasion-related genes obtained in the study showed little variations in gene expression profiles within and between parasite populations across sites. Conclusion: Our data suggest a low level of phenotypic diversity in Ghanaian clinical isolates across areas of varying endemicity and further highlight its importance in the quest for new intervention strategies, such as the investigation of blood-stage vaccine targets, particularly those targeting specific pathways and able to trigger the stimulation of broadly neutralizing invasion antibodies.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Parásitos , Animales , Ghana/epidemiología , Ligandos , Ácido N-Acetilneuramínico/metabolismo , Fenotipo , Plasmodium falciparum , Proteínas Protozoarias
19.
Front Cell Infect Microbiol ; 12: 997418, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204649

RESUMEN

Ex vivo phenotyping of P. falciparum erythrocyte invasion diversity is important in the identification and down selection of potential malaria vaccine targets. However, due to the lack of appropriate laboratory facilities in remote areas of endemic countries, direct processing of P. falciparum clinical isolates is usually not feasible. Here, we investigated the combined effect of short-term cryopreservation and thawing processes on the ex vivo invasion phenotypes of P. falciparum isolates. Ex-vivo or in vitro invasion phenotyping assays were performed with P. falciparum clinical isolates prior to or following culture adaptation, respectively. All isolates were genotyped at Day 0 for parasite clonality. Subsequently, isolates that were successfully culture-adapted were genotyped again at Days 7, 15, 21, and 28-post adaptation. Invasion phenotyping assays were performed in isogenic isolates revived at different time points (3, 6, and 12 months) post-cryopreservation and the resulting data were compared to that from ex-vivo invasion data of matched isogenic parental isolates. We also show that short-term culture adaptation selects for parasite clonality and could be a driving force for variation in invasion phenotypes as compared to ex vivo data where almost all parasite clones of a given isolate are present. Interestingly, our data show little variation in the parasites' invasion phenotype following short-term cryopreservation. Altogether, our data suggest that short-term cryopreservation of uncultured P. falciparum clinical isolates is a reliable mechanism for storing parasites for future use.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Parásitos , Animales , Criopreservación , Eritrocitos/parasitología , Malaria Falciparum/parasitología , Plasmodium falciparum/genética
20.
Open Biol ; 12(3): 210288, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35291880

RESUMEN

The antibody-dependent respiratory burst (ADRB) assay is a sensitive isoluminol-based chemiluminescence (CL) functional assay designed to assess the capacity of opsonizing antibodies against merozoites to induce neutrophil respiratory burst. ADRB was shown to measure protective immunity against malaria in endemic areas, but the assay needed further improvement to ensure better sensitivity and reproducibility. Here, we adjusted parameters such as the freezing-thawing procedure of merozoites, merozoites's concentration and the buffer solution's pH, and we used the improved assay to measure ADRB activity of 207 sera from 97 and 110 individuals living, respectively, in Dielmo and Ndiop villages with differing malaria endemicity. The improvement led to increased CL intensity and assay sensitivity, and a higher reproducibility. In both areas, ADRB activity correlated with malaria endemicity and individual's age discriminated groups with and without clinical malaria episodes, and significantly correlated with in vivo clinical protection from Plasmodium falciparum malaria. Our results demonstrate that the improved ADRB assay can be valuably used to assess acquired immunity during monitoring by control programmes and/or clinical trials.


Asunto(s)
Malaria , Estallido Respiratorio , Animales , Anticuerpos Antiprotozoarios , Humanos , Inmunidad , Malaria/prevención & control , Merozoítos , Plasmodium falciparum , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA