Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 141(4): 668-81, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20451243

RESUMEN

Peroxisomes have long been established to play a central role in regulating various metabolic activities in mammalian cells. These organelles act in concert with mitochondria to control the metabolism of lipids and reactive oxygen species. However, while mitochondria have emerged as an important site of antiviral signal transduction, a role for peroxisomes in immune defense is unknown. Here, we report that the RIG-I-like receptor (RLR) adaptor protein MAVS is located on peroxisomes and mitochondria. We find that peroxisomal and mitochondrial MAVS act sequentially to create an antiviral cellular state. Upon viral infection, peroxisomal MAVS induces the rapid interferon-independent expression of defense factors that provide short-term protection, whereas mitochondrial MAVS activates an interferon-dependent signaling pathway with delayed kinetics, which amplifies and stabilizes the antiviral response. The interferon regulatory factor IRF1 plays a crucial role in regulating MAVS-dependent signaling from peroxisomes. These results establish that peroxisomes are an important site of antiviral signal transduction.


Asunto(s)
Inmunidad Innata , Peroxisomas/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Fibroblastos/metabolismo , Hepatocitos/metabolismo , Humanos , Interferones/metabolismo , Ratones , Mitocondrias/metabolismo , Células Vero
2.
J Virol ; 94(22)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32907972

RESUMEN

Freshwater planarians, flatworms from order Tricladida, are experimental models of stem cell biology and tissue regeneration. An aspect of their biology that remains less well studied is their relationship with viruses that may infect them. In this study, we identified a taxon of monosegmented double-stranded RNA (dsRNA) viruses in five planarian species, including the well-characterized model Schmidtea mediterranea Sequences for the S. mediterranea virus (abbreviated SmedTV for S. mediterranea tricladivirus) were found in public transcriptome data from multiple institutions, indicating that SmedTV is prevalent in S. mediterranea lab colonies, though without causing evident disease. The presence of SmedTV in discrete cells was shown through in situ hybridization methods for detecting the viral RNA. SmedTV-staining cells were found to be concentrated in neural structures (eyes and brain) but were also scattered in other worm tissues as well. In contrast, few SmedTV-staining cells were seen in stem cell compartments (also consistent with RNA sequencing data) or early blastema tissue. RNA interference (RNAi) targeted to the SmedTV sequence led to apparent cure of infection, though effects on worm health or behavior were not observed. Efforts to transmit SmedTV horizontally through microinjection were unsuccessful. Based on these findings, we conclude that SmedTV infects S. mediterranea in a persistent manner and undergoes vertical transmission to progeny worms during serial passage in lab colonies. The utility of S. mediterranea as a regeneration model, coupled with the apparent capacity of SmedTV to evade normal host immune/RNAi defenses under standard conditions, argues that further studies are warranted to explore this newly recognized virus-host system.IMPORTANCE Planarians are freshwater flatworms, related more distantly to tapeworms and flukes, and have been developed as models to study the molecular mechanisms of stem cell biology and tissue regeneration. These worms live in aquatic environments, where they are likely to encounter a variety of viruses, bacteria, and eukaryotic organisms with pathogenic potential. How the planarian immune system has evolved to cope with these potential pathogens is not well understood, and only two types of planarian viruses have been described to date. Here, we report discovery and inaugural studies of a novel taxon of dsRNA viruses in five different planarian species. The virus in the best-characterized model species, Schmidtea mediterranea, appears to persist long term in that host while avoiding endogenous antiviral or RNAi mechanisms. The S. mediterranea virus-host system thus seems to offer opportunity for gaining new insights into host defenses and their evolution in an important lab model.


Asunto(s)
Virus ARN Bicatenario/clasificación , Virus ARN Bicatenario/genética , Virus ARN Bicatenario/metabolismo , Planarias/virología , Platelmintos/virología , Animales , Virus ARN Bicatenario/aislamiento & purificación , Evolución Molecular , Agua Dulce , Hibridación in Situ , Planarias/fisiología , Interferencia de ARN , ARN Bicatenario , Análisis de Secuencia de ARN , Células Madre , Transcriptoma
3.
Arch Virol ; 166(9): 2633-2648, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34231026

RESUMEN

This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2021. The entire ICTV was invited to vote on 290 taxonomic proposals approved by the ICTV Executive Committee at its meeting in October 2020, as well as on the proposed revision of the International Code of Virus Classification and Nomenclature (ICVCN). All proposals and the revision were ratified by an absolute majority of the ICTV members. Of note, ICTV mandated a uniform rule for virus species naming, which will follow the binomial 'genus-species' format with or without Latinized species epithets. The Study Groups are requested to convert all previously established species names to the new format. ICTV has also abolished the notion of a type species, i.e., a species chosen to serve as a name-bearing type of a virus genus. The remit of ICTV has been clarified through an official definition of 'virus' and several other types of mobile genetic elements. The ICVCN and ICTV Statutes have been amended to reflect these changes.


Asunto(s)
Clasificación/métodos , Filogenia , Virus no Clasificados/clasificación , Virus/clasificación , Cooperación Internacional , Viroides/clasificación , Virus/genética , Virus/aislamiento & purificación , Virus no Clasificados/genética , Virus no Clasificados/aislamiento & purificación
4.
Arch Virol ; 165(5): 1263-1264, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32065315

RESUMEN

The article Binomial nomenclature for virus species: a consultation, written by Stuart G. Siddell, Peter J. Walker, Elliot J. Lefkowitz, Arcady R. Mushegian, Bas E. Dutilh.

5.
Arch Virol ; 165(2): 519-525, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31797129

RESUMEN

The Executive Committee of the International Committee on Taxonomy of Viruses (ICTV) recognizes the need for a standardized nomenclature for virus species. This article sets out the case for establishing a binomial nomenclature and presents the advantages and disadvantages of different naming formats. The Executive Committee understands that adopting a binomial system would have major practical consequences, and invites comments from the virology community before making any decisions to change the existing nomenclature. The Executive Committee will take account of these comments in deciding whether to approve a standardized binomial system at its next meeting in October 2020. Note that this system would relate only to the formal names of virus species and not to the names of viruses.


Asunto(s)
Clasificación/métodos , Terminología como Asunto , Virus/clasificación
6.
Arch Virol ; 163(7): 1921-1926, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29516246

RESUMEN

Because so few viruses in the family Barnaviridae have been reported, we searched for more of them in public sequence databases. Here, we report the complete coding sequence of Colobanthus quitensis associated barnavirus 1, mined from a transcriptome of the Antarctic pearlwort Colobanthus quitensis. The 4.2-kb plus-strand sequence of this virus encompasses four main open reading frames (ORFs), as expected for barnaviruses, including ORFs for a protease-containing polyprotein, an RNA-dependent RNA polymerase whose translation appears to rely on - 1 ribosomal frameshifting, and a capsid protein that is likely to be translated from a subgenomic RNA. The possible derivation of this virus from a fungus associated with C. quitensis is discussed.


Asunto(s)
Caryophyllaceae/genética , Caryophyllaceae/virología , Sistemas de Lectura Abierta , Virus de Plantas/genética , Virus ARN/genética , ARN Viral/genética , Proteínas de la Cápside/genética , Minería de Datos/métodos , Bases de Datos Genéticas , Sistema de Lectura Ribosómico , Hongos/virología , Genoma Viral , ARN Polimerasa Dependiente del ARN/genética , Transcriptoma
7.
Arch Virol ; 163(9): 2601-2631, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29754305

RESUMEN

This article lists the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses in February 2018. A total of 451 species, 69 genera, 11 subfamilies, 9 families and one new order were added to the taxonomy. The current totals at each taxonomic level now stand at 9 orders, 131 families, 46 subfamilies, 803 genera and 4853 species. A change was made to the International Code of Virus Classification and Nomenclature to allow the use of the names of people in taxon names under appropriate circumstances. An updated Master Species List incorporating the approved changes was released in March 2018 ( https://talk.ictvonline.org/taxonomy/ ).


Asunto(s)
Virus/clasificación , Terminología como Asunto , Virología/organización & administración , Virus/genética , Virus/aislamiento & purificación
8.
Proc Natl Acad Sci U S A ; 112(32): E4354-63, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26195743

RESUMEN

Recent advances in biosensing technologies present great potential for medical diagnostics, thus improving clinical decisions. However, creating a label-free general sensing platform capable of detecting multiple biotargets in various clinical specimens over a wide dynamic range, without lengthy sample-processing steps, remains a considerable challenge. In practice, these barriers prevent broad applications in clinics and at patients' homes. Here, we demonstrate the nanoplasmonic electrical field-enhanced resonating device (NE(2)RD), which addresses all these impediments on a single platform. The NE(2)RD employs an immunodetection assay to capture biotargets, and precisely measures spectral color changes by their wavelength and extinction intensity shifts in nanoparticles without prior sample labeling or preprocessing. We present through multiple examples, a label-free, quantitative, portable, multitarget platform by rapidly detecting various protein biomarkers, drugs, protein allergens, bacteria, eukaryotic cells, and distinct viruses. The linear dynamic range of NE(2)RD is five orders of magnitude broader than ELISA, with a sensitivity down to 400 fg/mL This range and sensitivity are achieved by self-assembling gold nanoparticles to generate hot spots on a 3D-oriented substrate for ultrasensitive measurements. We demonstrate that this precise platform handles multiple clinical samples such as whole blood, serum, and saliva without sample preprocessing under diverse conditions of temperature, pH, and ionic strength. The NE(2)RD's broad dynamic range, detection limit, and portability integrated with a disposable fluidic chip have broad applications, potentially enabling the transition toward precision medicine at the point-of-care or primary care settings and at patients' homes.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas y Procedimientos Diagnósticos/instrumentación , Electricidad , Nanoestructuras/química , Línea Celular Tumoral , Coinfección/diagnóstico , Ambiente , Ensayo de Inmunoadsorción Enzimática , Diseño de Equipo , Humanos , Concentración de Iones de Hidrógeno , Límite de Detección , Microfluídica , Concentración Osmolar , Reproducibilidad de los Resultados , Temperatura
9.
Arch Virol ; 162(9): 2875-2879, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28477174

RESUMEN

Bisegmented dsRNA viruses that infect most or all isolates of apicomplexan parasite Cryptosporidium parvum are currently assigned to a single species, Cryptosporidium parvum virus 1, in genus Cryspovirus, family Partitiviridae. An analysis of existing sequence data suggested that the complete sequences of both cryspovirus genome segments, dsRNA1 and dsRNA2, had yet to be determined. We therefore set out to accomplish this for the virus strain that infects C. parvum isolate Iowa. The results suggest that several previous cryspovirus sequences are indeed truncated at one or both segment termini and also identify sequences at or near the termini that are conserved in both segments. Complete sequences of other cryspovirus strains, including ones from other Cryptosporidium species, are needed for refining their classification into one or more virus species.


Asunto(s)
Cryptosporidium parvum/virología , Genoma Viral , Virus ARN/genética , Virus ARN/aislamiento & purificación , Secuencia de Bases , Filogenia , ARN Viral/genética
10.
Arch Virol ; 162(5): 1441-1446, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28078475

RESUMEN

We mark the 50th anniversary of the International Committee on Taxonomy of Viruses (ICTV) by presenting a brief history of the organization since its foundation, showing how it has adapted to advancements in our knowledge of virus diversity and the methods used to characterize it. We also outline recent developments, supported by a grant from the Wellcome Trust (UK), that are facilitating substantial changes in the operations of the ICTV and promoting dialogue with the virology community. These developments will generate improved online resources, including a freely available and regularly updated ICTV Virus Taxonomy Report. They also include a series of meetings between the ICTV and the broader community focused on some of the major challenges facing virus taxonomy, with the outcomes helping to inform the future policy and practice of the ICTV.


Asunto(s)
Virus/clasificación , Virus/genética , Biología Computacional , Historia del Siglo XX , Historia del Siglo XXI , Metagenómica , Filogenia , Sociedades Científicas
11.
J Virol ; 89(2): 1182-94, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25378500

RESUMEN

UNLABELLED: Giardia lamblia virus (GLV) is a small, nonenveloped, nonsegmented double-stranded RNA (dsRNA) virus infecting Giardia lamblia, the most common protozoan pathogen of the human intestine and a major agent of waterborne diarrheal disease worldwide. GLV (genus Giardiavirus) is a member of family Totiviridae, along with several other groups of protozoal or fungal viruses, including Leishmania RNA viruses and Trichomonas vaginalis viruses. Interestingly, GLV is more closely related than other Totiviridae members to a group of recently discovered metazoan viruses that includes penaeid shrimp infectious myonecrosis virus (IMNV). Moreover, GLV is the only known protozoal dsRNA virus that can transmit efficiently by extracellular means, also like IMNV. In this study, we used transmission electron cryomicroscopy and icosahedral image reconstruction to examine the GLV virion at an estimated resolution of 6.0 Å. Its outermost diameter is 485 Å, making it the largest totivirus capsid analyzed to date. Structural comparisons of GLV and other totiviruses highlighted a related "T=2" capsid organization and a conserved helix-rich fold in the capsid subunits. In agreement with its unique capacity as a protozoal dsRNA virus to survive and transmit through extracellular environments, GLV was found to be more thermoresistant than Trichomonas vaginalis virus 1, but no specific protein machinery to mediate cell entry, such as the fiber complexes in IMNV, could be localized. These and other structural and biochemical findings provide a basis for future work to dissect the cell entry mechanism of GLV into a "primitive" (early-branching) eukaryotic host and an important enteric pathogen of humans. IMPORTANCE: Numerous pathogenic bacteria, including Corynebacterium diphtheriae, Salmonella enterica, and Vibrio cholerae, are infected with lysogenic bacteriophages that contribute significantly to bacterial virulence. In line with this phenomenon, several pathogenic protozoa, including Giardia lamblia, Leishmania species, and Trichomonas vaginalis are persistently infected with dsRNA viruses, and growing evidence indicates that at least some of these protozoal viruses can likewise enhance the pathogenicity of their hosts. Understanding of these protozoal viruses, however, lags far behind that of many bacteriophages. Here, we investigated the dsRNA virus that infects the widespread enteric parasite Giardia lamblia. Using electron cryomicroscopy and icosahedral image reconstruction, we determined the virion structure of Giardia lamblia virus, obtaining new information relating to its assembly, stability, functions in cell entry and transcription, and similarities and differences with other dsRNA viruses. The results of our study set the stage for further mechanistic work on the roles of these viruses in protozoal virulence.


Asunto(s)
Giardia lamblia/virología , Giardiavirus/aislamiento & purificación , Giardiavirus/ultraestructura , Virión/ultraestructura , Microscopía por Crioelectrón , Imagenología Tridimensional
12.
Proc Natl Acad Sci U S A ; 110(20): E1867-76, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23630248

RESUMEN

We tested a strategy for engineering recombinant mammalian reoviruses (rMRVs) to express exogenous polypeptides. One important feature is that these rMRVs are designed to propagate autonomously and can therefore be tested in animals as potential vaccine vectors. The strategy has been applied so far to three of the 10 MRV genome segments: S3, M1, and L1. To engineer the modified segments, a 5' or 3' region of the essential, long ORF in each was duplicated, and then exogenous sequences were inserted between the repeats. The inner repeat and exogenous insert were positioned in frame with the native protein-encoding sequences but were separated from them by an in-frame "2A-like" sequence element that specifies a cotranslational "stop/continue" event releasing the exogenous polypeptide from the essential MRV protein. This design preserves a terminal region of the MRV genome segment with essential activities in RNA packaging, assortment, replication, transcription, and/or translation and alters the encoded MRV protein to a limited degree. Recovery of rMRVs with longer inserts was made more efficient by wobble-mutagenizing both the inner repeat and the exogenous insert, which possibly helped via respective reductions in homologous recombination and RNA structure. Immunogenicity of a 300-aa portion of the simian immunodeficiency virus Gag protein expressed in mice by an L1-modified rMRV was confirmed by detection of Gag-specific T-cell responses. The engineering strategy was further used for mapping the minimal 5'-terminal region essential to MRV genome segment S3.


Asunto(s)
Ingeniería Genética/métodos , Vectores Genéticos , Reoviridae/metabolismo , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Animales , Femenino , Productos del Gen gag/metabolismo , Genoma Viral , Ratones , Ratones Endogámicos C57BL , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , Péptidos/química , ARN Bicatenario/metabolismo , Virus de la Inmunodeficiencia de los Simios , Secuencias Repetidas en Tándem/genética
13.
PLoS Pathog ; 9(3): e1003225, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23516364

RESUMEN

Double-stranded (ds)RNA fungal viruses are currently assigned to six different families. Those from the family Totiviridae are characterized by nonsegmented genomes and single-layer capsids, 300-450 Å in diameter. Helminthosporium victoriae virus 190S (HvV190S), prototype of recently recognized genus Victorivirus, infects the filamentous fungus Helminthosporium victoriae (telomorph: Cochliobolus victoriae), which is the causal agent of Victoria blight of oats. The HvV190S genome is 5179 bp long and encompasses two large, slightly overlapping open reading frames that encode the coat protein (CP, 772 aa) and the RNA-dependent RNA polymerase (RdRp, 835 aa). To our present knowledge, victoriviruses uniquely express their RdRps via a coupled termination-reinitiation mechanism that differs from the well-characterized Saccharomyces cerevisiae virus L-A (ScV-L-A, prototype of genus Totivirus), in which the RdRp is expressed as a CP/RdRp fusion protein due to ribosomal frameshifting. Here, we used transmission electron cryomicroscopy and three-dimensional image reconstruction to determine the structures of HvV190S virions and two types of virus-like particles (capsids lacking dsRNA and capsids lacking both dsRNA and RdRp) at estimated resolutions of 7.1, 7.5, and 7.6 Å, respectively. The HvV190S capsid is thin and smooth, and contains 120 copies of CP arranged in a "T = 2" icosahedral lattice characteristic of ScV-L-A and other dsRNA viruses. For aid in our interpretations, we developed and used an iterative segmentation procedure to define the boundaries of the two, chemically identical CP subunits in each asymmetric unit. Both subunits have a similar fold, but one that differs from ScV-L-A in many details except for a core α-helical region that is further predicted to be conserved among many other totiviruses. In particular, we predict the structures of other victoriviruses to be highly similar to HvV190S and the structures of most if not all totiviruses including, Leishmania RNA virus 1, to be similar as well.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/ultraestructura , Helminthosporium/virología , Totivirus/química , Virión/química , Proteínas de la Cápside/genética , Microscopía por Crioelectrón , Genoma Viral/genética , Imagenología Tridimensional , Microscopía Electrónica de Transmisión , Modelos Moleculares , Conformación Molecular , Sistemas de Lectura Abierta , ARN Bicatenario/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , Homología de Secuencia de Aminoácido , Totivirus/genética , Virión/genética , Virión/ultraestructura
14.
Arch Virol ; 160(6): 1579-83, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25877821

RESUMEN

New sequencing studies of the nonsegmented dsRNA genome of penaeid shrimp infectious myonecrosis virus (IMNV), a tentatively assigned member of the family Totiviridae, identified previously unread sequences at both genome termini in three previously analyzed IMNV strains, one from Brazil (the prototype strain of IMNV) and two from Indonesia. The new sequence determinations add >600 nt to the 5' end of the genomic plus strand of each strain, increasing the length of the 5' nontranslated region to at least 469-472 nt and the length of the upstream open reading frame (ORF1) translation product by at least 48 aa. These new findings are similar to recent ones for two other IMNV strains (GenBank KF836757.1 and KJ556923.1) and thereby corroborate important amendments to the full-length IMNV genome sequence.


Asunto(s)
Penaeidae/virología , Totiviridae/genética , Animales , Secuencia de Bases , Brasil/epidemiología , Genoma Viral/genética , Indonesia/epidemiología , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Regiones no Traducidas/genética
15.
Traffic ; 12(9): 1179-95, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21736684

RESUMEN

The viral factories of mammalian reovirus (MRV) are cytoplasmic structures that serve as sites of viral genome replication and particle assembly. A 721-aa MRV non-structural protein, µNS, forms the factory matrix and recruits other viral proteins to these structures. In this report, we show that µNS contains a conserved C-proximal sequence (711-LIDFS-715) that is similar to known clathrin-box motifs and is required for recruitment of clathrin to viral factories. Clathrin recruitment by µNS occurs independently of infecting MRV particles or other MRV proteins. Ala substitution for a single Leu residue (mutation L711A) within the putative clathrin-binding motif of µNS inhibits clathrin recruitment, but does not prevent formation or expansion of viral factories. Notably, clathrin-dependent cellular functions, including both endocytosis and secretion, are disrupted in cells infected with MRV expressing wild-type, but not L711A, µNS. These results identify µNS as a novel adaptor-like protein that recruits cellular clathrin to viral factories, disrupting normal functions of clathrin in cellular membrane trafficking. To our knowledge, this is the only viral or bacterial protein yet shown to interfere with clathrin functions in this manner. The results additionally establish a new approach for studies of clathrin functions, based on µNS-mediated sequestration.


Asunto(s)
Clatrina/metabolismo , Cuerpos de Inclusión Viral/metabolismo , Orthoreovirus de los Mamíferos/fisiología , Transporte de Proteínas/fisiología , Infecciones por Reoviridae/metabolismo , Proteínas no Estructurales Virales/metabolismo , Complejo 1 de Proteína Adaptadora/genética , Complejo 1 de Proteína Adaptadora/metabolismo , Complejo 2 de Proteína Adaptadora/genética , Complejo 2 de Proteína Adaptadora/metabolismo , Animales , Línea Celular , Clatrina/química , Clatrina/genética , Invaginaciones Cubiertas de la Membrana Celular/metabolismo , Cuerpos de Inclusión Viral/química , Ratones , Orthoreovirus de los Mamíferos/patogenicidad , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas no Estructurales Virales/genética , Replicación Viral
16.
J Gen Virol ; 94(Pt 5): 1039-1050, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23343626

RESUMEN

Piscine reovirus (PRV) is a tentative new member of the family Reoviridae and has been linked to heart and skeletal muscle inflammation in farmed Atlantic salmon (Salmo salar L.). Recent sequence-based evidence suggests that PRV is about equally related to members of the genera Orthoreovirus and Aquareovirus. Sequence similarities have also suggested that PRV might encode a fusion-associated small transmembrane (FAST) protein, which in turn suggests that PRV might be the prototype of a new genus with syncytium-inducing potential. In previous support of this designation has been the absence of identifiable PRV-encoded homologues of either the virion outer-clamp protein of ortho- and aquareoviruses or the virion outer-fibre protein of most orthoreoviruses. In the current report, we have provided experimental evidence that the putative p13 FAST protein of PRV lacks the defining feature of the FAST protein family - the ability to induce syncytium formation. Instead, p13 is the first example of a cytosolic, integral membrane protein encoded by ortho- or aquareoviruses, and induces cytotoxicity in the absence of cell-cell fusion. Sequence analysis also identified signature motifs of the outer-clamp and outer-fibre proteins of other reoviruses in two of the predicted PRV gene products. Based on these findings, we conclude that PRV does not encode a FAST protein and is therefore unlikely to be a new fusogenic reovirus. The presence of a novel integral membrane protein and two previously unrecognized, essential outer-capsid proteins has important implications for the biology, evolution and taxonomic classification of this virus.


Asunto(s)
Proteínas de la Cápside/genética , Enfermedades de los Peces/virología , Proteínas de la Membrana/genética , Infecciones por Reoviridae/veterinaria , Reoviridae/clasificación , Salmón , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas de la Cápside/metabolismo , Línea Celular Tumoral , Proliferación Celular , Citoplasma , Células Gigantes , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Orthoreovirus/clasificación , Orthoreovirus/genética , Orthoreovirus/aislamiento & purificación , Orthoreovirus/metabolismo , Filogenia , Proteínas Recombinantes de Fusión , Reoviridae/química , Reoviridae/genética , Reoviridae/aislamiento & purificación , Infecciones por Reoviridae/virología , Alineación de Secuencia , Células Vero , Virión
17.
Sex Transm Infect ; 89(6): 460-6, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23903808

RESUMEN

OBJECTIVES: Complex interactions of vaginal microorganisms with the genital tract epithelium shape mucosal innate immunity, which holds the key to sexual and reproductive health. Bacterial vaginosis (BV), a microbiome-disturbance syndrome prevalent in reproductive-age women, occurs commonly in concert with trichomoniasis, and both are associated with increased risk of adverse reproductive outcomes and viral infections, largely attributable to inflammation. To investigate the causative relationships among inflammation, BV and trichomoniasis, we established a model of human cervicovaginal epithelial cells colonised by vaginal Lactobacillus isolates, dominant in healthy women, and common BV species (Atopobium vaginae, Gardnerella vaginalis and Prevotella bivia). METHODS: Colonised epithelia were infected with Trichomonas vaginalis (TV) or exposed to purified TV virulence factors (membrane lipophosphoglycan (LPG), its ceramide-phosphoinositol-glycan core (CPI-GC) or the endosymbiont Trichomonas vaginalis virus (TVV)), followed by assessment of bacterial colony-forming units, the mucosal anti-inflammatory microbicide secretory leucocyte protease inhibitor (SLPI), and chemokines that drive pro-inflammatory, antigen-presenting and T cells. RESULTS: TV reduced colonisation by Lactobacillus but not by BV species, which were found inside epithelial cells. TV increased interleukin (IL)-8 and suppressed SLPI, likely via LPG/CPI-GC, and upregulated IL-8 and RANTES, likely via TVV as suggested by use of purified pathogenic determinants. BV species A vaginae and G vaginalis induced IL-8 and RANTES, and also amplified the pro-inflammatory responses to both LPG/CPI-GC and TVV, whereas P bivia suppressed the TV/TVV-induced chemokines. CONCLUSIONS: These molecular host-parasite-endosymbiont-bacteria interactions explain epidemiological associations and suggest a revised paradigm for restoring vaginal immunity and preventing BV/TV-attributable inflammatory sequelae in women.


Asunto(s)
Bacterias/inmunología , Células Epiteliales/inmunología , Inmunidad Innata , Interacciones Microbianas , Trichomonas vaginalis/inmunología , Bacterias/patogenicidad , Células Cultivadas , Quimiocinas/metabolismo , Recuento de Colonia Microbiana , Células Epiteliales/microbiología , Células Epiteliales/parasitología , Femenino , Humanos , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Trichomonas vaginalis/patogenicidad
18.
bioRxiv ; 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37292684

RESUMEN

Coccidian protozoa from the genus Eimeria are widespread parasites of vertebrates, causing serious disease (coccidiosis) and economic loss most notably in poultry. Several species of Eimeria are themselves infected with small RNA viruses assigned to the family Totiviridae . In this study, the sequences of two such viruses were newly determined, one of which represents the first complete protein-coding sequence of a virus from E. necatrix , an important pathogen of chickens, and the other of which is from E. stiedai , an important pathogen of rabbits. Sequence features of the newly identified viruses, compared with those of ones reported previously, provide several insights. Phylogenetic analyses suggest that these eimerian viruses constitute a well-demarcated clade, probably deserving of recognition as a distinct genus.

19.
J Biol Chem ; 286(34): 29521-30, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21719697

RESUMEN

The dsRNA genome of mammalian reovirus (MRV), like the dsDNA genomes of herpesviruses and many bacteriophages, is packed inside its icosahedral capsid in liquid-crystalline form, with concentrations near or more than 400 mg/ml. Viscosity in such environments must be high, but the relevance of viscosity for the macromolecular processes occurring there remains poorly characterized. Here, we describe the use of simple viscogens, glycerol and sucrose, to examine their effects on RNA transcription inside MRV core particles. Transcription inside MRV cores was strongly inhibited by these agents and to a greater extent than either predicted by theory or exhibited by a nonencapsidated transcriptase, suggesting that RNA transcription inside MRV cores is unusually sensitive to viscogen effects. The elongation phase of transcription was found to be a primary target of this inhibition. Similar results were obtained with particles of a second dsRNA virus, rhesus rotavirus, from a divergent taxonomic subfamily. Polymeric viscogens such as polyethylene glycol also inhibited RNA transcription inside MRV cores, but in a size-limited manner, suggesting that diffusion through channels in the MRV core is required for their activity. Modeling of the data suggested that the inherent intracapsid viscosity of both reo- and rotavirus is indeed high, two to three times the viscosity of water. The capacity for quantitative comparisons of intracapsid viscosity and effects of viscogens on macromolecular processes in confined spaces should be similarly informative in other systems.


Asunto(s)
Crioprotectores/farmacología , Glicerol/farmacología , ARN Bicatenario/metabolismo , ARN Viral/biosíntesis , Reoviridae/metabolismo , Sacarosa/farmacología , Edulcorantes/farmacología , Transcripción Genética/efectos de los fármacos , Animales , Línea Celular , Genoma Viral/fisiología , Humanos , Ratones , Viscosidad/efectos de los fármacos , Agua/metabolismo
20.
EMBO J ; 27(8): 1289-98, 2008 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-18369316

RESUMEN

Nonenveloped animal viruses must disrupt or perforate a cell membrane during entry. Recent work with reovirus has shown formation of size-selective pores in RBC membranes in concert with structural changes in capsid protein mu1. Here, we demonstrate that mu1 fragments released from reovirus particles are sufficient for pore formation. Both myristoylated N-terminal fragment mu1N and C-terminal fragment phi are released from particles. Both also associate with RBC membranes and contribute to pore formation in the absence of particles, but mu1N has the primary and sufficient role. Particles with a mutant form of mu1, unable to release mu1N or form pores, lack the ability to associate with membranes. They are, however, recruited by pores preformed with peptides released from wild-type particles or with synthetic mu1N. The results provide evidence that docking to membrane pores by virus particles may be a next step in membrane penetration after pore formation by released peptides.


Asunto(s)
Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Membrana Celular/metabolismo , Orthoreovirus de los Mamíferos/metabolismo , Péptidos/metabolismo , Virión/metabolismo , Animales , Membrana Celular/virología , Hemólisis/fisiología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA