Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Small ; 17(50): e2103338, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34655160

RESUMEN

Analytical characterization of small biological particles, such as extracellular vesicles (EVs), is complicated by their extreme heterogeneity in size, lipid, membrane protein, and cargo composition. Analysis of individual particles is essential for illuminating particle property distributions that are obscured by ensemble measurements. To enable high-throughput analysis of individual particles, liftoff nanocontact printing (LNCP) is used to define hexagonal antibody and toxin arrays that have a 425 nm dot size, on average, and 700 nm periodicity. The LNCP process is rapid, simple, and does not require access to specialized nanofabrication tools. These densely packed, highly ordered arrays are used to capture liposomes and bacterial outer membrane vesicles on the basis of their surface biomarkers, with a maximum of one particle per array dot, resulting in densely packed arrays of particles. Despite the high particle density, the underlying antibody or toxin array ensured that neighboring individual particles are optically resolvable. Provided target particle biomarkers and suitable capture molecules are identified, this approach can be used to generate high density arrays of a wide variety of small biological particles, including other types of EVs like exosomes.


Asunto(s)
Exosomas , Vesículas Extracelulares , Membrana Externa Bacteriana , Lípidos , Liposomas
2.
Chem Biomed Imaging ; 2(5): 352-361, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38817321

RESUMEN

Gram-negative bacteria produce outer membrane vesicles (OMVs) that play a critical role in cell-cell communication and virulence. OMVs have emerged as promising therapeutic agents for various biological applications such as vaccines and targeted drug delivery. However, the full potential of OMVs is currently constrained by inherent heterogeneities, such as size and cargo differences, and traditional ensemble assays are limited in their ability to reveal OMV heterogeneity. To overcome this issue, we devised an innovative approach enabling the identification of various characteristics of individual OMVs. This method, employing fluorescence microscopy, facilitates the detection of variations in size and surface markers. To demonstrate our method, we utilize the oral bacterium Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) which produces OMVs with a bimodal size distribution. As part of its virulence, A. actinomycetemcomitans secretes leukotoxin (LtxA) in two forms: soluble and surface associated with the OMVs. We observed a correlation between the size and toxin presence where larger OMVs were much more likely to possess LtxA compared to the smaller OMVs. In addition, we noted that, among the smallest OMVs (<100 nm diameter), the fractions that are toxin positive range from 0 to 30%, while the largest OMVs (>200 nm diameter) are between 70 and 100% toxin positive.

3.
Toxins (Basel) ; 16(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38535804

RESUMEN

Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium associated with localized aggressive periodontitis as well as some systemic diseases. The strains of A. actinomycetemcomitans most closely associated with disease produce more of a secreted leukotoxin (LtxA) than isolates from healthy carriers, suggesting a key role for this toxin in disease progression. LtxA is released into the bacterial cytosol in a free form as well as in association with the surface of outer membrane vesicles (OMVs). We previously observed that the highly leukotoxic A. actinomycetemcomitans strain JP2 produces two populations of OMVs: a highly abundant population of small (<100 nm) OMVs and a less abundant population of large (>300 nm) OMVs. Here, we have developed a protocol to isolate the OMVs produced during each specific phase of growth and used this to demonstrate that small OMVs are produced throughout growth and lack LtxA, while large OMVs are produced only during the exponential phase and are enriched with LtxA. Our results indicate that surface-associated DNA drives the selective sorting of LtxA into large OMVs. This study provides valuable insights into the observed heterogeneity of A. actinomycetemcomitans vesicles and emphasizes the importance of understanding these variations in the context of bacterial pathogenesis.


Asunto(s)
Aggregatibacter actinomycetemcomitans , Toxinas Biológicas , Citosol , Transporte Biológico , Movimiento Celular
4.
bioRxiv ; 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37205353

RESUMEN

Gram-negative bacteria produce outer membrane vesicles (OMVs) that play a critical role in cell-cell communication and virulence. Despite being isolated from a single population of bacteria, OMVs can exhibit heterogeneous size and toxin content, which can be obscured by assays that measure ensemble properties. To address this issue, we utilize fluorescence imaging of individual OMVs to reveal size-dependent toxin sorting. Our results showed that the oral bacterium Aggregatibacter actinomycetemcomitans (A.a.) produces OMVs with a bimodal size distribution, where larger OMVs were much more likely to possess leukotoxin (LtxA). Among the smallest OMVs (< 100 nm diameter), the fraction that are toxin positive ranges from 0-30%, while the largest OMVs (> 200 nm diameter) are between 70-100% toxin positive. Our single OMV imaging method provides a non-invasive way to observe OMV surface heterogeneity at the nanoscale level and determine size-based heterogeneities without the need for OMV fraction separation.

5.
PLoS One ; 18(8): e0290046, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37607200

RESUMEN

Exosomes are emerging as potent and safe delivery carriers for use in vaccinology and therapeutics. A better vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed to provide improved, broader, longer lasting neutralization of SARS-CoV-2, a more robust T cell response, enable widespread global usage, and further enhance the safety profile of vaccines given the likelihood of repeated booster vaccinations. Here, we use Capricor's StealthXTM platform to engineer exosomes to express native SARS-CoV-2 spike Delta variant (STX-S) protein on the surface for the delivery of a protein-based vaccine for immunization against SARS-CoV-2 infection. The STX-S vaccine induced a strong immunization with the production of a potent humoral immune response as demonstrated by high levels of neutralizing antibody not only against the delta SARS-CoV-2 virus but also two Omicron variants (BA.1 and BA.5), providing broader protection than current mRNA vaccines. Additionally, both CD4+ and CD8+ T cell responses were increased significantly after treatment. Quantification of spike protein by ELISA showed that only nanograms of protein were needed to induce a potent immune response. This is a significantly lower dose than traditional recombinant protein vaccines with no adjuvant required, which makes the StealthXTM exosome platform ideal for the development of multivalent vaccines with a better safety profile. Importantly, our exosome platform allows novel proteins, or variants in the case of SARS-CoV-2, to be engineered onto the surface of exosomes in a matter of weeks, comparable with mRNA vaccine technology, but without the cold storage requirements necessary for mRNA vaccines. The ability to utilize exosomes for cellular delivery of proteins, as demonstrated by STX-S, has enormous potential to revolutionize vaccinology by rapidly facilitating antigen presentation at an extremely low dose resulting in a potent, broad antibody response.


Asunto(s)
COVID-19 , Exosomas , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/prevención & control , SARS-CoV-2/genética
6.
Microbiol Spectr ; 11(3): e0050323, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37093009

RESUMEN

Currently approved vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have focused solely on the spike protein to provide immunity. The first vaccines were developed rapidly using spike mRNA delivered by lipid nanoparticles but required ultralow-temperature storage and have had limited immunity against variations in spike. Subsequently, protein-based vaccines were developed, which offer broader immunity but require significant time for development and the use of an adjuvant to boost the immune response. Here, exosomes were used to deliver a bivalent protein-based vaccine in which two independent viral proteins were used. Exosomes were engineered to express either SARS-CoV-2 delta spike (Stealth X-Spike [STX-S]) or the more conserved nucleocapsid (Stealth X-Nucleocapsid [STX-N]) protein on the surface. When administered as a single product (STX-S or STX-N) or in combination (STX-S+N), both STX-S and STX-N induced strong immunization with the production of potent humoral and cellular immune responses. Interestingly, these results were obtained with the administration of only nanograms of protein and without an adjuvant. In two independent animal models (mouse and rabbit), the administration of nanograms of the STX-S+N vaccine resulted in increased antibody production, potent neutralizing antibodies with cross-reactivity to other variants of spike, and strong T-cell responses. Importantly, no competition of immune responses was observed, allowing the delivery of nucleocapsid with spike to offer improved SARS-CoV-2 immunity. These data show that the StealthX exosome platform has the enormous potential to revolutionize vaccinology by combining the advantages of mRNA and recombinant protein vaccines into a superior, rapidly generated, low-dose vaccine resulting in potent, broader immunity. IMPORTANCE The pandemic emergency has brought to light the need for a new generation of rapidly developed vaccines that induce longer-lasting, potent, and broader immune responses. While the mRNA vaccines played a critical role during the emergency in reducing SARS-CoV-2 hospitalization rates and deaths, more efficient approaches are needed. A multivalent, protein-based vaccine delivered by exosomes could meet this urgent need due to the high speed of development, manufacturability, and the ability to produce a strong antibody response, with neutralizing antibodies and a strong T-cell response able to broadly combat viral infection with a minimum number of injections.


Asunto(s)
COVID-19 , Exosomas , Vacunas Virales , Animales , Ratones , Conejos , Linfocitos T , SARS-CoV-2/genética , COVID-19/prevención & control , Vacunas Virales/genética , Vacunas Combinadas , Anticuerpos Antivirales , Inmunización , Anticuerpos Neutralizantes , ARN Mensajero
7.
J Vis Exp ; (169)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33871453

RESUMEN

The cell wall of Gram-negative bacteria consists of an inner (cytoplasmic) and outer membrane (OM), separated by a thin peptidoglycan layer. Throughout growth, the outer membrane can bleb to form spherical outer membrane vesicles (OMVs). These OMVs are involved in numerous cellular functions including cargo delivery to host cells and communication with bacterial cells. Recently, the therapeutic potential of OMVs has begun to be explored, including their use as vaccines and drug delivery vehicles. Although OMVs are derived from the OM, it has long been appreciated that the lipid and protein cargo of the OMV differs, often significantly, from that of the OM. More recently, evidence that bacteria can release multiple types of OMVs has been discovered, and evidence exists that size can impact the mechanism of their uptake by host cells. However, studies in this area are limited by difficulties in efficiently separating the heterogeneously sized OMVs. Density gradient centrifugation (DGC) has traditionally been used for this purpose; however, this technique is time-consuming and difficult to scale-up. Size exclusion chromatography (SEC), on the other hand, is less cumbersome and lends itself to the necessary future scale-up for therapeutic use of OMVs. Here, we describe a SEC approach that enables reproducible separation of heterogeneously sized vesicles, using as a test case, OMVs produced by Aggregatibacter actinomycetemcomitans, which range in diameter from less than 150 nm to greater than 350 nm. We demonstrate separation of "large" (350 nm) OMVs and "small" (<150 nm) OMVs, verified by dynamic light scattering (DLS). We recommend SEC-based techniques over DGC-based techniques for separation of heterogeneously sized vesicles due to its ease of use, reproducibility (including user-to-user), and possibility for scale-up.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Cromatografía en Gel/métodos , Heterogeneidad Genética , Reproducibilidad de los Resultados
8.
Toxins (Basel) ; 10(10)2018 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-30322160

RESUMEN

The Gram-negative bacterium, Aggregatibacter actinomycetemcomitans, has been associated with localized aggressive periodontitis (LAP). In particular, highly leukotoxic strains of A. actinomycetemcomitans have been more closely associated with this disease, suggesting that LtxA is a key virulence factor for A. actinomycetemcomitans. LtxA is secreted across both the inner and outer membranes via the Type I secretion system, but has also been found to be enriched within outer membrane vesicles (OMVs), derived from the bacterial outer membrane. We have characterized the association of LtxA with OMVs produced by the highly leukotoxic strain, JP2, and investigated the interaction of these OMVs with host cells to understand how LtxA is delivered to host cells in this OMV-associated form. Our results demonstrated that a significant fraction of the secreted LtxA exists in an OMV-associated form. Furthermore, we have discovered that in this OMV-associated form, the toxin is trafficked to host cells by a cholesterol- and receptor-independent mechanism in contrast to the mechanism by which free LtxA is delivered. Because OMV-associated toxin is trafficked to host cells in an entirely different manner than free toxin, this study highlights the importance of studying both free and OMV-associated forms of LtxA to understand A. actinomycetemcomitans virulence.


Asunto(s)
Exotoxinas/metabolismo , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Colesterol/metabolismo , Exotoxinas/toxicidad , Vesículas Extracelulares/metabolismo , Humanos , Células Jurkat , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Células THP-1
9.
mBio ; 5(6): e01864, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25370491

RESUMEN

UNLABELLED: The diverse Fusobacterium genus contains species implicated in multiple clinical pathologies, including periodontal disease, preterm birth, and colorectal cancer. The lack of genetic tools for manipulating these organisms leaves us with little understanding of the genes responsible for adherence to and invasion of host cells. Actively invading Fusobacterium species can enter host cells independently, whereas passively invading species need additional factors, such as compromise of mucosal integrity or coinfection with other microbes. We applied whole-genome sequencing and comparative analysis to study the evolution of active and passive invasion strategies and to infer factors associated with active forms of host cell invasion. The evolution of active invasion appears to have followed an adaptive radiation in which two of the three fusobacterial lineages acquired new genes and underwent expansions of ancestral genes that enable active forms of host cell invasion. Compared to passive invaders, active invaders have much larger genomes, encode FadA-related adhesins, and possess twice as many genes encoding membrane-related proteins, including a large expansion of surface-associated proteins containing the MORN2 domain of unknown function. We predict a role for proteins containing MORN2 domains in adhesion and active invasion. In the largest and most comprehensive comparison of sequenced Fusobacterium species to date, we have generated a testable model for the molecular pathogenesis of Fusobacterium infection and illuminate new therapeutic or diagnostic strategies. IMPORTANCE: Fusobacterium species have recently been implicated in a broad spectrum of human pathologies, including Crohn's disease, ulcerative colitis, preterm birth, and colorectal cancer. Largely due to the genetic intractability of member species, the mechanisms by which Fusobacterium causes these pathologies are not well understood, although adherence to and active invasion of host cells appear important. We examined whole-genome sequence data from a diverse set of Fusobacterium species to identify genetic determinants of active forms of host cell invasion. Our analyses revealed that actively invading Fusobacterium species have larger genomes than passively invading species and possess a specific complement of genes-including a class of genes of unknown function that we predict evolved to enable host cell adherence and invasion. This study provides an important framework for future studies on the role of Fusobacterium in pathologies such as colorectal cancer.


Asunto(s)
Adhesión Bacteriana , Endocitosis , Fusobacterium/fisiología , Genes Bacterianos , Genoma Bacteriano , Factores de Virulencia/genética , Evolución Molecular , Fusobacterium/genética , Fusobacterium/crecimiento & desarrollo , Análisis de Secuencia de ADN , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA