Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(23): 12459-12464, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37255463

RESUMEN

The cis/trans stereochemistry of repeating alkenes in polymers provides a powerful handle to modulate the thermal and mechanical properties of these soft materials, but synthetic methods to precisely dictate this parameter remain scarce. We report herein a cis-selective acyclic diene metathesis (ADMET) polymerization of readily available α,ω-diene monomers with high functional group tolerance. Identification of a highly stereoselective cyclometalated Ru catalyst allowed the synthesis of a broad array of polymers with cis contents up to 99%. This platform was leveraged to study the impact of the cis geometry on the thermal and mechanical properties of polyalkenamers, including an ABA triblock copolymer synthesized via extension of a cis-rich telechelic polyoctenamer with d,l-lactide. These results suggest that cis-selective ADMET affords an efficient strategy to tune the properties of a variety of polymers.

2.
J Phys Chem C Nanomater Interfaces ; 128(6): 2518-2528, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38379916

RESUMEN

Poly(p-phenylenevinylene) (PPV) is a staple of the family of conjugated polymers with desirable optoelectronic properties for applications including light-emitting diodes (LEDs) and photovoltaic devices. Although the significant impact of olefin geometry on the steady-state optical properties of PPVs has been extensively studied, PPVs with precise stereochemistry have yet to be investigated using nonlinear optical spectroscopy for quantum sensing, as well as light harvesting for biological applications. Herein, we report our investigation of the influence of olefin stereochemistry on both linear and nonlinear optical properties through the synthesis of all-cis and all-trans PPV copolymers. We performed two-photon absorption (TPA) using a classical and entangled light source and compared both classical TPA and entangled two-photon absorption (ETPA) cross sections of these stereodefined PPVs. Whereas the TPA cross section of the all-trans PPV was expectedly higher than that of all-cis PPV, presumably because of the larger transition dipole moment, the opposite trend was measured via ETPA, with the all-cis PPV exhibiting the highest ETPA cross section. DFT calculations suggest that this difference might stem from the interaction of entangled photons with lower-lying electronic states in the all-cis PPV variant. Additionally, we explored the photoinduced processes for both cis and trans PPVs through time-resolved fluorescence upconversion and femtosecond transient absorption techniques. This study revealed that the sensitivity of PPVs in two-photon absorption varies with classical versus quantum light and can be modulated through the control of the geometry of the repeating alkenes, which is a key stepping stone toward their use in quantum sensing, bioimaging, and the design of polymer-based light-harvesting systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA