Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genet Med ; 24(2): 307-318, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34906515

RESUMEN

PURPOSE: Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the leading cause of chronic kidney disease in children. In total, 174 monogenic causes of isolated or syndromic CAKUT are known. However, syndromic features may be overlooked when the initial clinical diagnosis of CAKUT is made. We hypothesized that the yield of a molecular genetic diagnosis by exome sequencing (ES) can be increased by applying reverse phenotyping, by re-examining the case for signs/symptoms of the suspected clinical syndrome that results from the genetic variant detected by ES. METHODS: We conducted ES in an international cohort of 731 unrelated families with CAKUT. We evaluated ES data for variants in 174 genes, in which variants are known to cause isolated or syndromic CAKUT. In cases in which ES suggested a previously unreported syndromic phenotype, we conducted reverse phenotyping. RESULTS: In 83 of 731 (11.4%) families, we detected a likely CAKUT-causing genetic variant consistent with an isolated or syndromic CAKUT phenotype. In 19 of these 83 families (22.9%), reverse phenotyping yielded syndromic clinical findings, thereby strengthening the genotype-phenotype correlation. CONCLUSION: We conclude that employing reverse phenotyping in the evaluation of syndromic CAKUT genes by ES provides an important tool to facilitate molecular genetic diagnostics in CAKUT.


Asunto(s)
Sistema Urinario , Anomalías Urogenitales , Alelos , Exoma/genética , Humanos , Riñón/anomalías , Anomalías Urogenitales/genética , Reflujo Vesicoureteral
2.
Am J Med Genet A ; 188(5): 1355-1367, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35040250

RESUMEN

Spina bifida (SB) is the second most common nonlethal congenital malformation. The existence of monogenic SB mouse models and human monogenic syndromes with SB features indicate that human SB may be caused by monogenic genes. We hypothesized that whole exome sequencing (WES) allows identification of potential candidate genes by (i) generating a list of 136 candidate genes for SB, and (ii) by unbiased exome-wide analysis. We generated a list of 136 potential candidate genes from three categories and evaluated WES data of 50 unrelated SB cases for likely deleterious variants in 136 potential candidate genes, and for potential SB candidate genes exome-wide. We identified 6 likely deleterious variants in 6 of the 136 potential SB candidate genes in 6 of the 50 SB cases, whereof 4 genes were derived from mouse models, 1 gene was derived from human nonsyndromic SB, and 1 gene was derived from candidate genes known to cause human syndromic SB. In addition, by unbiased exome-wide analysis, we identified 12 genes as potential candidates for SB. Identification of these 18 potential candidate genes in larger SB cohorts will help decide which ones can be considered as novel monogenic causes of human SB.


Asunto(s)
Exoma , Disrafia Espinal , Animales , Modelos Animales de Enfermedad , Exoma/genética , Humanos , Ratones , Disrafia Espinal/genética , Secuenciación del Exoma
3.
J Nephrol ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39003671

RESUMEN

BACKGROUND: Steroid-resistant nephrotic syndrome (SRNS) is the second most frequent cause of chronic kidney disease in children and young adults. The most severe form of steroid-resistant nephrotic syndrome is congenital nephrotic syndrome Finnish type (CNSF), caused by biallelic loss-of-function variants in NPHS1, encoding nephrin. Since each of the 68 monogenic causes of steroid-resistant nephrotic syndrome represents a rare cause of the disease, tailoring therapeutic interventions to multiple molecular targets remains challenging, suggesting gene replacement therapy (GRT) as a viable alternative. To set the ground for a gene replacement study in vivo, we established rigorous, quantifiable, and reproducible phenotypic assessment of a conditional Nphs1 knockout mouse model. METHODS: By breeding a floxed Nphs1fl/- mouse (Nphs1tm1Afrn/J) previously studied for pancreatic ß-cell survival with a podocin promoter-driven Cre recombinase mouse model (Tg(NPHS2-Cre)295Lbh/J), we generated mice with podocyte-specific nephrin deficiency (Nphs1fl/fl NPHS2-Cre +). RESULTS: We observed a median survival to postnatal day P5 in nephrin-deficient mice, whereas heterozygous control mice and wild type (WT) control group showed 90% and 100% survival, respectively (at P50 days). Light microscopy analysis showed a significantly higher number of renal-tubular microcysts per kidney section in nephrin-deficient mice compared to the control groups (P < 0.0022). Transmission electron microscopy demonstrated reduced foot process (FP) density in nephrin-deficient mice compared to controls (P < 0.0001). Additionally, proteinuria quantitation using urine albumin-to-creatinine ratio (UACR) was significantly higher in nephrin-deficient mice compared to controls. CONCLUSIONS: This study represents the first comprehensive description of the kidney phenotype in a nephrin-deficient mouse model, laying the foundation for future gene replacement therapy endeavors.

4.
Sci Rep ; 14(1): 15916, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987283

RESUMEN

Steroid-resistant nephrotic syndrome (SRNS) is the second most frequent cause of childhood chronic kidney disease. Congenital nephrotic syndrome of the Finnish type (CNF) (MIM# 256300) is caused by biallelic variants in the gene NPHS1, encoding nephrin, an integral component of the kidney filtration barrier. No causal treatments exist, and children inevitably require kidney replacement therapy. In preparation for gene replacement therapy (GRT) in CNF, we established a quantifiable and reproducible phenotypic assessment of the nephrin-deficient CNF mouse model: 129/Sv-Nphs1tm1Rkl/J. We assessed the phenotypic spectrum of homozygous mice (Nphs1tm1Rkl/Nphs1tm1Rkl) compared to heterozygous controls (Nphs1tm1Rkl/Nphs1WT) by the following parameters: 1. cohort survival, 2. podocyte foot process (FP) density per glomerular basement membrane (GBM) using transmission electron microscopy, 3. tubular microcysts in brightfield microscopy, and 4. urinary albumin/creatinine ratios. Nphs1tm1Rkl/Nphs1tm1Rkl mice exhibited: 1. perinatal lethality with median survival of 1 day, 2. FP effacement with median FP density of 1.00 FP/µm GBM (2.12 FP/µm in controls), 3. tubular dilation with 65 microcysts per section (6.5 in controls), and 4. increased albumin/creatinine ratio of 238 g/g (4.1 g/g in controls). We here established four quantifiable phenotyping features of a CNF mouse model to facilitate future GRT studies by enabling sensitive detection of phenotypic improvements.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de la Membrana , Ratones Noqueados , Síndrome Nefrótico , Fenotipo , Podocitos , Animales , Síndrome Nefrótico/genética , Síndrome Nefrótico/patología , Proteínas de la Membrana/genética , Ratones , Podocitos/metabolismo , Podocitos/patología , Masculino , Femenino , Membrana Basal Glomerular/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA