Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(30): e2305187120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459543

RESUMEN

Genetic alterations are often acquired during prolonged propagation of pluripotent stem cells (PSCs). This ruins the stem cell quality and hampers their full applications. Understanding how PSCs maintain genomic integrity would provide the clues to overcome the hurdle. It has been known that embryonic stem cells (ESCs) utilize high-fidelity pathways to ensure genomic stability, but the underlying mechanisms remain largely elusive. Here, we show that many DNA damage response and repair genes display differential alternative splicing in mouse ESCs compared to differentiated cells. Particularly, Rev1 and Polq, two key genes for mutagenic translesion DNA synthesis (TLS) and microhomology-mediated end joining (MMEJ) repair pathways, respectively, display a significantly higher rate of cryptic exon (CE) inclusion in ESCs. The frequent CE inclusion disrupts the normal protein expressions of REV1 and POLθ, thereby suppressing the mutagenic TLS and MMEJ. Further, we identify an ESC-specific RNA binding protein DPPA5A which stimulates the CE inclusion in Rev1 and Polq. Depletion of DPPA5A in mouse ESCs decreased the CE inclusion of Rev1 and Polq, induced the protein expression, and stimulated the TLS and MMEJ activity. Enforced expression of DPPA5A in NIH3T3 cells displayed reverse effects. Mechanistically, we found that DPPA5A directly regulated CE splicing of Rev1. DPPA5A associates with U2 small nuclear ribonucleoprotein of the spliceosome and binds to the GA-rich motif in the CE of Rev1 to promote CE inclusion. Thus, our study uncovers a mechanism to suppress mutagenic TLS and MMEJ pathways in ESCs.


Asunto(s)
Mutágenos , Nucleotidiltransferasas , Animales , Ratones , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Células 3T3 NIH , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ADN , Daño del ADN
2.
Sensors (Basel) ; 23(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37112418

RESUMEN

Face anti-spoofing is critical for enhancing the robustness of face recognition systems against presentation attacks. Existing methods predominantly rely on binary classification tasks. Recently, methods based on domain generalization have yielded promising results. However, due to distribution discrepancies between various domains, the differences in the feature space related to the domain considerably hinder the generalization of features from unfamiliar domains. In this work, we propose a multi-domain feature alignment framework (MADG) that addresses poor generalization when multiple source domains are distributed in the scattered feature space. Specifically, an adversarial learning process is designed to narrow the differences between domains, achieving the effect of aligning the features of multiple sources, thus resulting in multi-domain alignment. Moreover, to further improve the effectiveness of our proposed framework, we incorporate multi-directional triplet loss to achieve a higher degree of separation in the feature space between fake and real faces. To evaluate the performance of our method, we conducted extensive experiments on several public datasets. The results demonstrate that our proposed approach outperforms current state-of-the-art methods, thereby validating its effectiveness in face anti-spoofing.

3.
Biogerontology ; 23(1): 115-128, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35038074

RESUMEN

Aging and aging-related disorders contribute to formidable socioeconomic and healthcare challenges. Several promising small molecules have been identified to target conserved genetic pathways delaying aging to extend lifespan and healthspan in many organisms. We previously found that extract from an edible and medicinal plant Chrysanthemum indicum L. (C. indicum L.) protect skin from UVB-induced photoaging, partially by reducing reactive oxygen species (ROS) generation. Thus, we hypothesized that C. indicum L. and its biological active compound may extend lifespan and health span in vivo. We find that both water and ethanol extracts from C. indicum L. extended lifespan of Caenorhabditis elegans, with better biological effect on life extending for ethanol extracts. As one of the major biological active compounds, handelin extended lifespan of C. elegans too. RNA-seq analysis revealed overall gene expression change of C. elegans post stimulation of handelin focus on several antioxidative proteins. Handelin significantly reduced ROS level and maintained the number and morphology of mitochondria. Moreover, handelin improveed many C. elegans behaviors related to healthspan, including increased pharyngeal pumping and body movement. Muscle fiber imaging analyses revealed that handelin maintains muscle architecture by stabilizing myofilaments. In conclusion, our present study finds a novel compound handelin, from C. indicum L., which bring about biologically beneficial effects by mild stress response, termed as hormetin, that can extend both lifespan and healthspan in vivo on C. elegans. Further study on mammal animal model of natural aging or sarcopenia will verify the potential clinical value of handelin.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Etanol/farmacología , Longevidad/fisiología , Mamíferos/metabolismo , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Terpenos
4.
Proc Natl Acad Sci U S A ; 114(35): E7282-E7290, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28808022

RESUMEN

The timing of the diversification of placental mammals relative to the Cretaceous-Paleogene (KPg) boundary mass extinction remains highly controversial. In particular, there have been seemingly irreconcilable differences in the dating of the early placental radiation not only between fossil-based and molecular datasets but also among molecular datasets. To help resolve this discrepancy, we performed genome-scale analyses using 4,388 loci from 90 taxa, including representatives of all extant placental orders and transcriptome data from flying lemurs (Dermoptera) and pangolins (Pholidota). Depending on the gene partitioning scheme, molecular clock model, and genic deviation from molecular clock assumptions, extensive sensitivity analyses recovered widely varying diversification scenarios for placental mammals from a given gene set, ranging from a deep Cretaceous origin and diversification to a scenario spanning the KPg boundary, suggesting that the use of suboptimal molecular clock markers and methodologies is a major cause of controversies regarding placental diversification timing. We demonstrate that reconciliation between molecular and paleontological estimates of placental divergence times can be achieved using the appropriate clock model and gene partitioning scheme while accounting for the degree to which individual genes violate molecular clock assumptions. A birth-death-shift analysis suggests that placental mammals underwent a continuous radiation across the KPg boundary without apparent interruption by the mass extinction, paralleling a genus-level radiation of multituberculates and ecomorphological diversification of both multituberculates and therians. These findings suggest that the KPg catastrophe evidently played a limited role in placental diversification, which, instead, was likely a delayed response to the slightly earlier radiation of angiosperms.


Asunto(s)
Euterios/fisiología , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Animales , Evolución Biológica , Bases de Datos Genéticas , Evolución Molecular , Extinción Biológica , Fósiles , Variación Genética/genética , Genoma , Mamíferos/fisiología , Modelos Teóricos , Paleontología , Filogenia , Especificidad de la Especie
5.
Cytogenet Genome Res ; 152(2): 65-72, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28719894

RESUMEN

Sokolov's dwarf hamster (Cricetulus sokolovi) is the least studied representative of the striped hamsters (Cricetulus barabensis species group), the taxonomy of which remains controversial. The species was described based on chromosome morphology, but neither the details of the karyotype nor the phylogenetic relationships with other Cricetulus are known. In the present study, the karyotype of C. sokolovi was examined using cross-species chromosome painting. Molecular and cytogenetic data were employed to determine the phylogenetic position of Sokolov's hamster and to analyze the potential pathways of chromosome evolution in Cricetulus. Both the chromosome and molecular data support the species status of Sokolov's hamster. Phylogenetic analysis of the CYTB data placed C. sokolovi as sister to all other striped hamsters (sequence divergence of 8.1%). FISH data revealed that the karyotype of C. sokolovi is highly rearranged, with the most parsimonious scenario of its origin implying at least 4 robertsonian events and a centromere shift. Comparative cytogenetic data on Cricetinae suggest that their evolutionary history includes both periods of chromosomal conservatism and episodes of rapid chromosomal change.


Asunto(s)
Pintura Cromosómica/métodos , Cromosomas de los Mamíferos/genética , Cricetulus/genética , Cariotipo , Filogenia , Animales , Haplotipos/genética
6.
Nature ; 463(7279): 311-7, 2010 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-20010809

RESUMEN

Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes.


Asunto(s)
Genoma/genética , Genómica , Ursidae/genética , Algoritmos , Animales , China , Secuencia Conservada/genética , Mapeo Contig , Dieta/veterinaria , Perros , Evolución Molecular , Femenino , Fertilidad/genética , Fertilidad/fisiología , Heterocigoto , Humanos , Familia de Multigenes/genética , Polimorfismo de Nucleótido Simple/genética , Receptores Acoplados a Proteínas G/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Sintenía/genética , Ursidae/clasificación , Ursidae/fisiología
7.
BMC Evol Biol ; 15: 205, 2015 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-26409465

RESUMEN

BACKGROUND: Previous cross-species painting studies with probes from chicken (Gallus gallus) chromosomes 1-10 and a paint pool of nineteen microchromosomes have revealed that the drastic karyotypic reorganization in Accipitridae is due to extensive synteny disruptions and associations. However, the number of synteny association events and identities of microchromosomes involved in such synteny associations remain undefined, due to the lack of paint probes derived from individual chicken microchromosomes. Moreover, no genome-wide homology map between Accipitridae species and other avian species with atypical karyotype organization has been reported till now, and the karyotype evolution within Accipitriformes remains unclear. RESULTS: To delineate the synteny-conserved segments in Accipitridae, a set of painting probes for the griffon vulture, Gyps fulvus (2n = 66) was generated from flow-sorted chromosomes. Together with previous generated probes from the stone curlew, Burhinus oedicnemus (2n = 42), a Charadriiformes species with atypical karyotype organization, we conducted multidirectional chromosome painting, including reciprocal chromosome painting between B. oedicnemus and G. fulvus and cross-species chromosome painting between B. oedicnemus and two accipitrid species (the Himalayan griffon, G. himalayensis 2n = 66, and the common buzzard, Buteo buteo, 2n = 68). In doing so, genome-wide homology maps between B. oedicnemus and three Accipitridae species were established. From there, a cladistic analysis using chromosomal characters and mapping of chromosomal changes on a consensus molecular phylogeny were conducted in order to search for cytogenetic signatures for different lineages within Accipitriformes. CONCLUSION: Our study confirmed that the genomes of the diurnal birds of prey, especially the genomes of species in Accipitriformes excluding Cathartidae, have been extensively reshuffled when compared to other bird lineages. The chromosomal rearrangements involved include both fusions and fissions. Our chromosome painting data indicated that the Palearctic common buzzard (BBU) shared several common chromosomal rearrangements with some Old World vultures, and was found to be more closely related to other Accipitridae than to Neotropical buteonine raptors from the karyotypic perspective. Using both a chromosome-based cladistic analysis as well as by mapping of chromosomal differences onto a molecular-based phylogenetic tree, we revealed a number of potential cytogenetic signatures that support the clade of Pandionidae (PHA) + Accipitridae. In addition, our cladistic analysis using chromosomal characters appears to support the placement of osprey (PHA) in Accipitridae.


Asunto(s)
Evolución Biológica , Pintura Cromosómica , Falconiformes/genética , Animales , Pollos/genética , Cromosomas , Falconiformes/clasificación , Genoma , Cariotipo , Filogenia , Sintenía
9.
Genes (Basel) ; 14(2)2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36833416

RESUMEN

Constitutive-heterochromatin placement in the genome affects chromosome structure by occupying centromeric areas and forming large blocks. To investigate the basis for heterochromatin variation in the genome, we chose a group of species with a conserved euchromatin part: the genus Martes [stone marten (M. foina, 2n = 38), sable (M. zibellina, 2n = 38), pine marten (M. martes, 2n = 38), and yellow-throated marten (M. flavigula, 2n = 40)]. We mined the stone marten genome for the most abundant tandem repeats and selected the top 11 macrosatellite repetitive sequences. Fluorescent in situ hybridization revealed distributions of the tandemly repeated sequences (macrosatellites, telomeric repeats, and ribosomal DNA). We next characterized the AT/GC content of constitutive heterochromatin by CDAG (Chromomycin A3-DAPI-after G-banding). The euchromatin conservatism was shown by comparative chromosome painting with stone marten probes in newly built maps of the sable and pine marten. Thus, for the four Martes species, we mapped three different types of tandemly repeated sequences critical for chromosome structure. Most macrosatellites are shared by the four species with individual patterns of amplification. Some macrosatellites are specific to a species, autosomes, or the X chromosome. The variation of core macrosatellites and their prevalence in a genome are responsible for the species-specific variation of the heterochromatic blocks.


Asunto(s)
Carnívoros , Mustelidae , Animales , Mustelidae/genética , Heterocromatina , Hibridación Fluorescente in Situ , Eucromatina , Carnívoros/genética , Estructuras Cromosómicas
10.
Zookeys ; 1185: 143-161, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074901

RESUMEN

The hedgehog genus Mesechinus (Erinaceidae, Eulipotyphla) is currently comprised of four species, M.dauuricus, M.hughi, M.miodon, and M.wangi. Except for M.wangi, which is found in southwestern China, the other three species are mainly distributed in northern China and adjacent Mongolia and Russia. From 2018 to 2023, we collected seven Mesechinus specimens from Anhui and Zhejiang provinces, eastern China. Here, we evaluate the taxonomic and phylogenetic status of these specimens by integrating molecular, morphometric, and karyotypic approaches. Our results indicate that the Anhui and Zhejiang specimens are distinct from the four previously recognized species and are a new species. We formally described it here as Mesechinusorientalissp. nov. It is the only Mesechinus species occurring in eastern China and is geographically distant from all known congeners. Morphologically, the new species is most similar to M.hughi, but it is distinguishable from that species by the combination of its smaller size, shorter spines, and several cranial characteristics. Mesechinusorientalis sp. nov. is a sister to the lineage composed of M.hughi and M.wangi from which it diverged approximately 1.10 Ma.

11.
Sci Bull (Beijing) ; 68(21): 2598-2606, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37758615

RESUMEN

Cross-species transmission of viruses from wildlife animal reservoirs, such as bats, poses a threat to human and domestic animal health. Previous studies have shown that domestic animals have important roles as intermediate hosts, enabling the transmission of genetically diverse coronaviruses from natural hosts to humans. Here, we report the identification and characterization of a novel canine coronavirus (VuCCoV), which caused an epidemic of acute diarrhea in Vulpes (foxes) in Shenyang, China. The epidemic started on November 8, 2019, and caused more than 39,600 deaths by January 1, 2022. Full-length viral genomic sequences were obtained from 15 foxes with diarrhea at the early stage of this outbreak. The VuCCoV genome shared more than 90% nucleotide identity with canine coronavirus (CCoV) for three of the four structural genes, with the S gene showing a larger amount of divergence. In addition, 67% (10/15) of the VuCCoV genomes contained an open reading frame (ORF3) gene, which was previously only detected in CCoV-I genomes. Notably, VuCCoV had only two to three amino acid differences at the partial RNA-dependent RNA polymerase (RdRp) level to bat CoV, suggesting a close genetic relationship. Therefore, these novel VuCCoV genomes represent a previously unsampled lineage of CCoVs. We also show that the VuCCoV spike protein binds to canine and fox aminopeptidase N (APN), which may allow this protein to serve as an entry receptor. In addition, cell lines were identified that are sensitive to VuCCoV using a pseudovirus system. These data highlight the importance of identifying the diversity and distribution of coronaviruses in domestic animals, which could mitigate future outbreaks that could threaten livestock, public health, and economic growth.


Asunto(s)
Coronavirus Canino , Zorros , Animales , Perros , Humanos , Coronavirus Canino/genética , Animales Salvajes , SARS-CoV-2/genética , Animales Domésticos , Brotes de Enfermedades/veterinaria , Diarrea/epidemiología
12.
BMC Ecol Evol ; 22(1): 23, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35240987

RESUMEN

BACKGROUND: Previous cytogenetic studies show that the karyotypes of species in Ciconiiformes vary considerably, from 2n = 52 to 78. Their karyotypes include different numbers of small to minute bi-armed chromosomes that have evolved probably by fusions of two ancestral microchromosomes, besides macrochromosomes and dot-like microchromosomes. However, it is impossible to define the inter-species homologies of such small-sized bi-armed chromosomes based on chromosome morphology and banding characteristics. Although painting probes from the chicken (Gallus gallus, GGA) chromosomes 1-9 and Z have been widely used to investigate avian chromosome homologies, GGA microchromosome probes are rarely used in these studies because most GGA microchromosome probes generated by flow sorting often contain multiple GGA microchromosomes. In contrast, the stone curlew (Burhinus oedicnemus, BOE, Charadriiformes) has an atypical low diploid chromosome number (42) karyotype and only 4 pairs of dot-like microchromosomes; a set of chromosome-specific painting probes that cover all BOE chromosomes has been generated. To get a genome-wide view of evolutionary chromosomal rearrangements in different lineages of Ciconiiformes, we used BOE painting probes instead of GGA painting probes to analyze the karyotypes of three ciconiiform species belonging to two different families: the eastern grey heron (Ardea cinerea, ACI, 2n = 64, Ardeidae), the little egret (Egretta garzetta, EGA, 2n = 64, Ardeidae) and the crested ibis (Nipponia nippon, NNI, 2n = 68, Threskiornithidae). RESULTS: BOE painting probes display the same hybridization pattern on chromosomes of ACI and EGA, while a different hybridization pattern is observed on chromosomes of NNI. BOE autosome probes detected 21 conserved homologous segments and 5 fusions on the sixteen pairs of recognizable chromosomes of ACI and EGA, while 16 conserved homologous segments and 4 fusions were found on the twelve pairs of recognizable chromosomes of NNI. Only a portion of smaller bi-armed chromosomes in the karyotypes of the ciconiiform species could have evolved from fusions of ancestral microchromosomes. In particular BOE 5, which is the result of a fusion between two segments homologous to GGA 7 and 8 respectively, was retained also as either a single chromosome in ACI (ACI 5) and EGA (EGA 5) or had fused with a part of the BOE 10 equivalent in NNI (NNI 5). CONCLUSION: Our painting results indicate that different chromosome rearrangements occur in different ciconiiform lineages. Some of the small-sized bi-armed chromosomes in ACI, EGA and NNI are derived from the fusions of two microchromosomes, indicating that microchromosome fusions play an important role in ciconiiform chromosome evolution. The fusion segment homologous to GGA 7 and 8 is a potential cytogenetic signature that unites Ardeidae and Threskiornithidae.


Asunto(s)
Charadriiformes , Animales , Charadriiformes/genética , Pollos/genética , Pintura Cromosómica/métodos , Evolución Molecular , Humanos , Cariotipo
13.
Nat Commun ; 12(1): 6858, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824214

RESUMEN

Muntjac deer have experienced drastic karyotype changes during their speciation, making it an ideal model for studying mechanisms and functional consequences of mammalian chromosome evolution. Here we generated chromosome-level genomes for Hydropotes inermis (2n = 70), Muntiacus reevesi (2n = 46), female and male M. crinifrons (2n = 8/9) and a contig-level genome for M. gongshanensis (2n = 8/9). These high-quality genomes combined with Hi-C data allowed us to reveal the evolution of 3D chromatin architectures during mammalian chromosome evolution. We find that the chromosome fusion events of muntjac species did not alter the A/B compartment structure and topologically associated domains near the fusion sites, but new chromatin interactions were gradually established across the fusion sites. The recently borne neo-Y chromosome of M. crinifrons, which underwent male-specific inversions, has dramatically restructured chromatin compartments, recapitulating the early evolution of canonical mammalian Y chromosomes. We also reveal that a complex structure containing unique centromeric satellite, truncated telomeric and palindrome repeats might have mediated muntjacs' recurrent chromosome fusions. These results provide insights into the recurrent chromosome tandem fusion in muntjacs, early evolution of mammalian sex chromosomes, and reveal how chromosome rearrangements can reshape the 3D chromatin regulatory conformations during species evolution.


Asunto(s)
Aberraciones Cromosómicas/veterinaria , Cromosomas de los Mamíferos/genética , Ciervo Muntjac/genética , Animales , Cromatina/genética , Aberraciones Cromosómicas/estadística & datos numéricos , Mapeo Contig , Ciervos/clasificación , Ciervos/genética , Demografía , Evolución Molecular , Femenino , Genoma/genética , Masculino , Ciervo Muntjac/clasificación , Filogenia , Cromosomas Sexuales/genética , Sintenía
14.
Chromosome Res ; 17(3): 321-9, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19283495

RESUMEN

The Chinese pangolin (Manis pentadactyla), a representative species of the order Pholidota, has been enlisted in the mammalian whole-genome sequencing project mainly because of its phylogenetic importance. Previous studies showed that the diploid number of M. pentadactyla could vary from 2n = 36 to 42. To further characterize the genome organization of M. pentadactyla and to elucidate chromosomal mechanism underlying the karyotype diversity of Pholidota, we flow-sorted the chromosomes of 2n = 40 M. pentadactyla, and generated a set of chromosome-specific probes by DOP-PCR amplification of flow-sorted chromosomes. A comparative chromosome map between M. pentadactyla and the Malayan pangolin (Manis javanica, 2n = 38), as well as between human and M. pentadactyla, was established by chromosome painting for the first time. Our results demonstrate that seven Robertsonian rearrangements, together with considerable variations in the quantity of heterochromatin and in the number of nucleolar organizer regions (NORs) differentiate the karyotypes of 2n = 38 M. javanica and 2n = 40 M. pentadactyla. Moreover, we confirm that the M. javanica Y chromosome bears one NOR. Comparison of human homologous segment associations found in the genomes of M. javanica and M. pentadactyla revealed seven shared associations (HSA 1q/11, 2p/5, 2q/10q, 4p+q/20, 5/13, 6/19p and 8q/10p) that could constitute the potential Pholidota-specific signature rearrangements.


Asunto(s)
Cromosomas de los Mamíferos/genética , Reordenamiento Génico/genética , Variación Genética , Mamíferos/genética , Animales , Mapeo Cromosómico , Pintura Cromosómica , Hibridación Fluorescente in Situ , Cariotipificación , Especificidad de la Especie
15.
Chromosome Res ; 17(1): 99-113, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19172404

RESUMEN

The chicken is the most extensively studied species in birds and thus constitutes an ideal reference for comparative genomics in birds. Comparative cytogenetic studies indicate that the chicken has retained many chromosome characters of the ancestral avian karyotype. The homology between chicken macrochromosomes (1-9 and Z) and their counterparts in more than 40 avian species of 10 different orders has been established by chromosome painting. However, the avian homologues of chicken microchromosomes remain to be defined. Moreover, no reciprocal chromosome painting in birds has been performed due to the lack of chromosome-specific probes from other avian species. Here we have generated a set of chromosome-specific paints using flow cytometry that cover the whole genome of the stone curlew (Burhinus oedicnemus, Charadriiformes), a species with one of the lowest diploid number so far reported in birds, as well as paints from more microchromosomes of the chicken. A genome-wide comparative map between the chicken and the stone curlew has been constructed for the first time based on reciprocal chromosome painting. The results indicate that extensive chromosome fusions underlie the sharp decrease in the diploid number in the stone curlew. To a lesser extent, chromosome fissions and inversions occurred also during the evolution of the stone curlew. It is anticipated that this complete set of chromosome painting probes from the first Neoaves species will become an invaluable tool for avian comparative cytogenetics.


Asunto(s)
Charadriiformes/genética , Pollos/genética , Diploidia , Genoma , Animales , Pintura Cromosómica , Embrión no Mamífero , Evolución Molecular , Femenino , Genómica , Hibridación Fluorescente in Situ , Especificidad de la Especie
16.
J Microencapsul ; 27(3): 205-17, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19606941

RESUMEN

To investigate the effect of different enteric polymers on the characteristics of pH-sensitive nanoparticles, Rhodamine 6G (Rho) was incorporated in various pH-sensitive nanoparticles. The different patterns of pH-dependent release profiles were observed, although some polymers have the same dissolving pH. The distribution, adhesion and transition of different nanoparticles in rat gut showed significant difference, closely related to the release characteristics of nanoparticles, and their release behaviour are dependent on the dissolving pH and the structure of the polymers, as well as the drug property.Most nanoparticle formulations decreased the distribution and adhesion of Rho in the stomach but increased these values in the intestine. The nanocarriers also control the drug release sites and release rate in the GI tract. In conclusion, pH-sensitive nanoparticles seem favourable for drug absorption and it is important to choose the proper materials to obtain the suitable characteristics for the oral pH-sensitive nanoparticles.


Asunto(s)
Portadores de Fármacos/química , Tracto Gastrointestinal/metabolismo , Nanopartículas/química , Polímeros/química , Rodaminas/administración & dosificación , Animales , Concentración de Iones de Hidrógeno , Masculino , Ratas , Ratas Sprague-Dawley , Rodaminas/farmacocinética
17.
BMC Biol ; 6: 18, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18452598

RESUMEN

BACKGROUND: Flying lemurs or Colugos (order Dermoptera) represent an ancient mammalian lineage that contains only two extant species. Although molecular evidence strongly supports that the orders Dermoptera, Scandentia, Lagomorpha, Rodentia and Primates form a superordinal clade called Supraprimates (or Euarchontoglires), the phylogenetic placement of Dermoptera within Supraprimates remains ambiguous. RESULTS: To search for cytogenetic signatures that could help to clarify the evolutionary affinities within this superordinal group, we have established a genome-wide comparative map between human and the Malayan flying lemur (Galeopterus variegatus) by reciprocal chromosome painting using both human and G. variegatus chromosome-specific probes. The 22 human autosomal paints and the X chromosome paint defined 44 homologous segments in the G. variegatus genome. A putative inversion on GVA 11 was revealed by the hybridization patterns of human chromosome probes 16 and 19. Fifteen associations of human chromosome segments (HSA) were detected in the G. variegatus genome: HSA1/3, 1/10, 2/21, 3/21, 4/8, 4/18, 7/15, 7/16, 7/19, 10/16, 12/22 (twice), 14/15, 16/19 (twice). Reverse painting of G. variegatus chromosome-specific paints onto human chromosomes confirmed the above results, and defined the origin of the homologous human chromosomal segments in these associations. In total, G. variegatus paints revealed 49 homologous chromosomal segments in the HSA genome. CONCLUSION: Comparative analysis of our map with published maps from representative species of other placental orders, including Scandentia, Primates, Lagomorpha and Rodentia, suggests a signature rearrangement (HSA2q/21 association) that links Scandentia and Dermoptera to one sister clade. Our results thus provide new evidence for the hypothesis that Scandentia and Dermoptera have a closer phylogenetic relationship to each other than either of them has to Primates.


Asunto(s)
Evolución Molecular , Tupaiidae/genética , Animales , Línea Celular , Bandeo Cromosómico , Pintura Cromosómica , ADN Mitocondrial/genética , Citometría de Flujo , Humanos , Masculino , Filogenia , Tupaiidae/clasificación
18.
Science ; 364(6446)2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31221828

RESUMEN

The ruminants are one of the most successful mammalian lineages, exhibiting morphological and habitat diversity and containing several key livestock species. To better understand their evolution, we generated and analyzed de novo assembled genomes of 44 ruminant species, representing all six Ruminantia families. We used these genomes to create a time-calibrated phylogeny to resolve topological controversies, overcoming the challenges of incomplete lineage sorting. Population dynamic analyses show that population declines commenced between 100,000 and 50,000 years ago, which is concomitant with expansion in human populations. We also reveal genes and regulatory elements that possibly contribute to the evolution of the digestive system, cranial appendages, immune system, metabolism, body size, cursorial locomotion, and dentition of the ruminants.


Asunto(s)
Genoma , Rumiantes/clasificación , Rumiantes/genética , Animales , Evolución Molecular , Filogenia , Análisis de Secuencia de ADN
19.
Zool Res ; 39(5): 356-363, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-29616678

RESUMEN

Gibbons and siamangs (Hylobatidae) are well-known for their rapid chromosomal evolution, which has resulted in high speciation rate within the family. On the other hand, distinct karyotypes do not prevent speciation, allowing interbreeding between individuals in captivity, and the unwanted hybrids are ethically problematic as all gibbon species are endangered or critically endangered. Thus, accurate species identification is crucial for captive breeding, particularly in China where studbooks are unavailable. Identification based on external morphology is difficult, especially for hybrids, because species are usually similar in appearance. In this study, we employed G-banding karyotyping and fluorescence in situ hybridization (FISH) as well as a PCR-based approach to examine karyotypic characteristics and identify crested gibbons of the genus Nomascus from zoos and nature reserves in China. We characterized and identified five karyotypes from 21 individuals of Nomascus. Using karyotypes and mitochondrial and nuclear genes, we identified three purebred species and three hybrids, including one F2 hybrid between N. gabriellae and N. siki. Our results also supported that N. leucogenys and N. siki shared the same inversion on chromosome 7, which resolves arguments from previous studies. Our results demonstrated that both karyotyping and DNA-based approaches were suitable for identifying purebred species, though neither was ideal for hybrid identification. The advantages and disadvantages of both approaches are discussed. Our results further highlight the importance of animal ethics and welfare, which are critical for endangered species in captivity.


Asunto(s)
Hylobates/genética , Animales , Animales de Zoológico , Núcleo Celular/genética , China , Especies en Peligro de Extinción , Genes/genética , Hylobates/clasificación , Hibridación Fluorescente in Situ , Cariotipo , Cariotipificación , Mitocondrias/genética , Reacción en Cadena de la Polimerasa
20.
Genomics Proteomics Bioinformatics ; 5(3-4): 207-15, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18267302

RESUMEN

Gibbons have experienced extensive karyotype rearrangements during evolution and represent an ideal model for studying the underlying molecular mechanism of evolutionary chromosomal rearrangements. It is anticipated that the cloning and sequence characterization of evolutionary chromosomal breakpoints will provide vital insights into the molecular force that has driven such a radical karyotype reshuffle in gibbons. We constructed and characterized a high-quality fosmid library of the white-cheeked gibbon (Nomascus leucogenys) containing 192,000 non- redundant clones with an average insert size of 38 kb and 2.5-fold genome coverage. By end sequencing of 100 randomly selected fosmid clones, we generated 196 sequence tags for the library. These end-sequenced fosmid clones were then mapped onto the chromosomes of the white-cheeked gibbon by fluorescence in situ hybridization, and no spurious chimeric clone was detected. BLAST search against the human genome showed a good correlation between the number of hit clones and the number of chromosomes, an indication of unbiased chromosomal distribution of the fosmid library. The chromosomal distribution of the mapped clones is also consistent with the BLAST search result against human and white-cheeked gibbon genomes. The fosmid library and the mapped clones will serve as a valuable resource for further studying gibbons' chromosomal rearrangements and the underlying molecular mechanism as well as for comparative genomic study in the lesser apes.


Asunto(s)
Biblioteca de Genes , Hylobates/genética , Animales , Secuencia de Bases , Mapeo Cromosómico , Cromosomas Humanos Y/genética , Clonación Molecular , Cartilla de ADN/genética , Evolución Molecular , Vectores Genéticos , Heterocromatina/genética , Humanos , Hibridación Fluorescente in Situ , Cariotipificación , Masculino , Lugares Marcados de Secuencia , Especificidad de la Especie , Cromosoma Y/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA