Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Respir Cell Mol Biol ; 62(3): 354-363, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31545652

RESUMEN

Comparisons of infectivity among the clinically important nontuberculous mycobacteria (NTM) species have not been explored in great depth. Rapid-growing mycobacteria, including Mycobacterium abscessus and M. porcinum, can cause indolent but progressive lung disease. Slow-growing members of the M. avium complex are the most common group of NTM to cause lung disease, and molecular approaches can now distinguish between several distinct species of M. avium complex including M. intracellulare, M. avium, M. marseillense, and M. chimaera. Differential infectivity among these NTM species may, in part, account for differences in clinical outcomes and response to treatment; thus, knowing the relative infectivity of particular isolates could increase prognostication accuracy and enhance personalized treatment. Using human macrophages, we investigated the infectivity and virulence of nine NTM species, as well as multiple isolates of the same species. We also assessed their capacity to evade killing by the antibacterial peptide cathelicidin (LL-37). We discovered that the ability of different NTM species to infect macrophages varied among the species and among isolates of the same species. Our biochemical assays implicate modified phospholipids, which may include a phosphatidylinositol or cardiolipin backbone, as candidate antagonists of LL-37 antibacterial activity. The high variation in infectivity and virulence of NTM strains suggests that more detailed microbiological and biochemical characterizations are necessary to increase our knowledge of NTM pathogenesis.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/antagonistas & inhibidores , Evasión Inmune/fisiología , Lípidos de la Membrana/fisiología , Micobacterias no Tuberculosas/patogenicidad , Fosfolípidos/fisiología , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Celular/inmunología , Cromatografía en Capa Delgada , Escherichia coli/efectos de los fármacos , Humanos , Macrófagos/microbiología , Macrófagos Alveolares/microbiología , Lípidos de la Membrana/aislamiento & purificación , Micobacterias no Tuberculosas/efectos de los fármacos , Micobacterias no Tuberculosas/fisiología , Fosfolípidos/aislamiento & purificación , Filogenia , Especificidad de la Especie , Células THP-1 , Virulencia , Catelicidinas
2.
Pathogens ; 11(12)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36558769

RESUMEN

Different nematodes affect canines, however Acanthocheilonema reconditum was considered mostly a non-pathogenic parasite. Climate change, animal migration, and other factors transformed the dynamics of vector-borne diseases, including filariasis. Since 2016, a sudden increase in the number of dogs with microfilaremia was reported by different veterinary centers in Cali, southwest Colombia. The objective of this study was to molecularly identify the etiologic agent of this filariasis outbreak detected in this city, using PCR−RFLP and evaluating dogs' clinical signs. From 2018−2019, canine filariasis cases were prospectively evaluated after a microscopic test, recruiting 82 cases and 43 healthy controls from 2971 samples. Acanthocheilonema reconditum (Nematoda, Onchocercidae) was identified in 61.3% of the cases (49/82) by PCR−RFLP. Sanger sequencing of the 5.8S ribosomal RNA gene and internal transcribed spacer-2 fragment was additionally performed on seven cases, confirming A. reconditum in all of them. The filariasis cases are statistically associated with male dogs who have clinical signs of anemia, low levels of hemoglobin and hematocrit (p < 0.0001), and high levels of plasma proteins (p < 0.001). This emerging canine disease constitutes an important public health concern among veterinarians and active surveillance is advised to explore its zoonotic potential.

3.
Antibiotics (Basel) ; 9(3)2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32209979

RESUMEN

Tuberculosis (TB) remains the deadliest Infectious disease worldwide, partially due to the increasing dissemination of multidrug and extensively drug-resistant (MDR/XDR) strains. Drug regimens containing the new anti-TB drugs bedaquiline (BDQ) and delamanid (DLM) appear as a last resort for the treatment of MDR or XDR-TB. Unfortunately, resistant cases to these drugs emerged just one year after their introduction in clinical practice. Early detection of resistant strains to BDQ and DLM is crucial to preserving the effectiveness of these drugs. Here, we present a systematic review aiming to define all available genotypic variants linked to different levels of resistance to BDQ and DLM that have been described through whole genomic sequencing (WGS) and the available drug susceptibility testing methods. During the review, we performed a thorough analysis of 18 articles. BDQ resistance was associated with genetic variants in Rv0678 and atpE, while mutations in pepQ were linked to a low-level of resistance for BDQ. For DLM, mutations in the genes ddn, fgd1, fbiA, and fbiC were found in phenotypically resistant cases, while all the mutations in fbiB were reported only in DLM-susceptible strains. Additionally, WGS analysis allowed the detection of heteroresistance to both drugs. In conclusion, we present a comprehensive panel of gene mutations linked to different levels of drug resistance to BDQ and DLM.

4.
PLoS One ; 15(4): e0224908, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32330146

RESUMEN

Beijing strains of Mycobacterium tuberculosis (lineage 2) have been associated with drug-resistance and transmission of tuberculosis worldwide. Most of the Beijing strains identified in the Colombian Pacific coast have exhibited a multidrug resistant (MDR) phenotype. We sought to evaluate the clonality and sublineage of Beijing strains circulating in Southwestern Colombia. Thirty-seven Beijing strains were identified through spoligotyping out of 311 clinical isolates collected in 9 years from 2002-2010. Further analysis by MIRU-VNTR 24 loci was conducted for the Beijing strains. For sublineage classification, deletions of RD105, RD207, and RD131 and point mutations at fbpB, mutT2, and acs were evaluated. Drug-resistance associated mutations to first- and second-line anti-TB drugs were also evaluated. Additionally, two Beijing strains were Illumina-whole genome sequenced (one MDR and one drug-susceptible). Among the 37 Beijing strains characterized, 36 belonged to the SIT190 type from which 28 were MDR, four pre-extensively drug resistant (XDR) TB, and four XDR-TB. The remaining strain was SIT1 and drug susceptible. MIRU-VNTR analysis allowed the identification of three Beijing clusters and two unique strains. Beijing strains were confirmed as "modern" sublineage. The mutations rpoB S531L and katG S315T were the most common among MDR strains. Moreover, the two strains evaluated by whole genome sequencing (WGS) shared most of the genetic features with the sublineage 2.2.1 "modern" Beijing previously characterized from Asian strains. WGS analysis of the MDR strain revealed the presence of eight SNPs previously reported in other MDR "Beijing-like" strains from Colombia. The presence of "modern" Beijing strains in Southwestern Colombia, most of them with MDR phenotype, suggests a different origin of this M. tuberculosis sublineage compared to other Beijing strains found in neighboring South American countries. This work may serve as a genetic baseline to study the evolution and spread of M. tuberculosis Beijing strains in Colombia, which play an important role in the propagation of MDR-TB.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Mutación , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Adolescente , Adulto , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Beijing/epidemiología , Niño , Preescolar , Colombia/epidemiología , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/efectos de los fármacos , Filogenia , Mutación Puntual , Eliminación de Secuencia , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Adulto Joven
5.
Data Brief ; 24: 103953, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31193076

RESUMEN

Different biochemical studies looking for the effect of INH on the physiology of Mycobacterium tuberculosis (Mtb) have been conducted. Here, we present a detailed analysis, looking at the protein variation in the Mtb cell due to exposure of sub-inhibitory concentrations of INH, evaluating three different variables: cellular fraction, genetic lineage, and INH phenotypic profile. Mass spectrometry analysis demonstrated that the most significantly affected cellular fraction was the membrane and the INH resistant strains showed the highest number of proteins altered when they were exposed to INH. Raw data are available via ProteomeXchange with identifier PXD007588.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA