Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
New Phytol ; 243(3): 1034-1049, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38853453

RESUMEN

Processing by proteases irreversibly regulates the fate of plant proteins and hampers the production of recombinant proteins in plants, yet only few processing events have been described in agroinfiltrated Nicotiana benthamiana, which has emerged as the main transient protein expression platform in plant science and molecular pharming. Here, we used in-gel digests and mass spectrometry to monitor the migration and topography of 5040 plant proteins within a protein gel. By plotting the peptides over the gel slices, we generated peptographs that reveal where which part of each protein was detected within the protein gel. These data uncovered that 60% of the detected proteins have proteoforms that migrate at lower than predicted molecular weights, implicating extensive proteolytic processing. This analysis confirms the proteolytic removal and degradation of autoinhibitory prodomains of most but not all proteases, and revealed differential processing within pectinemethylesterase and lipase families. This analysis also uncovered intricate processing of glycosidases and uncovered that ectodomain shedding might be common for a diverse range of receptor-like kinases. Transient expression of double-tagged candidate proteins confirmed processing events in vivo. This large proteomic dataset implicates an elaborate proteolytic machinery shaping the proteome of N. benthamiana.


Asunto(s)
Nicotiana , Proteínas de Plantas , Proteolisis , Proteoma , Nicotiana/genética , Nicotiana/metabolismo , Proteoma/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteómica , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/genética , Lipasa/metabolismo , Lipasa/genética , Péptido Hidrolasas/metabolismo , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética
2.
Plant J ; 106(6): 1523-1540, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33768644

RESUMEN

Temperature passively affects biological processes involved in plant growth. Therefore, it is challenging to study the dedicated temperature signalling pathways that orchestrate thermomorphogenesis, a suite of elongation growth-based adaptations that enhance leaf-cooling capacity. We screened a chemical library for compounds that restored hypocotyl elongation in the pif4-2-deficient mutant background at warm temperature conditions in Arabidopsis thaliana to identify modulators of thermomorphogenesis. The small aromatic compound 'Heatin', containing 1-iminomethyl-2-naphthol as a pharmacophore, was selected as an enhancer of elongation growth. We show that ARABIDOPSIS ALDEHYDE OXIDASES redundantly contribute to Heatin-mediated hypocotyl elongation. Following a chemical proteomics approach, the members of the NITRILASE1-subfamily of auxin biosynthesis enzymes were identified among the molecular targets of Heatin. Our data reveal that nitrilases are involved in promotion of hypocotyl elongation in response to high temperature and Heatin-mediated hypocotyl elongation requires the NITRILASE1-subfamily members, NIT1 and NIT2. Heatin inhibits NIT1-subfamily enzymatic activity in vitro and the application of Heatin accordingly results in the accumulation of NIT1-subfamily substrate indole-3-acetonitrile in vivo. However, levels of the NIT1-subfamily product, bioactive auxin (indole-3-acetic acid), were also significantly increased. It is likely that the stimulation of hypocotyl elongation by Heatin might be independent of its observed interaction with NITRILASE1-subfamily members. However, nitrilases may contribute to the Heatin response by stimulating indole-3-acetic acid biosynthesis in an indirect way. Heatin and its functional analogues present novel chemical entities for studying auxin biology.


Asunto(s)
Aminohidrolasas/metabolismo , Arabidopsis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hipocótilo/efectos de los fármacos , Aldehído Oxidasa/genética , Aldehído Oxidasa/metabolismo , Aminohidrolasas/genética , Apomorfina/análogos & derivados , Apomorfina/farmacología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Herbicidas/farmacología , Hipocótilo/crecimiento & desarrollo , Ácidos Indolacéticos , Estructura Molecular , Picloram/farmacología , Relación Estructura-Actividad , Transcriptoma/efectos de los fármacos
3.
Plant Biotechnol J ; 16(10): 1797-1810, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29509983

RESUMEN

Agroinfiltrated Nicotiana benthamiana is a flexible and scalable platform for recombinant protein (RP) production, but its great potential is hampered by plant proteases that degrade RPs. Here, we tested 29 candidate protease inhibitors (PIs) in agroinfiltrated N. benthamiana leaves for enhancing accumulation of three unrelated RPs: glycoenzyme α-Galactosidase; glycohormone erythropoietin (EPO); and IgG antibody VRC01. Of the previously described PIs enhancing RP accumulation, we found only cystatin SlCYS8 to be effective. We identified three additional new, unrelated PIs that enhance RP accumulation: N. benthamiana NbPR4, NbPot1 and human HsTIMP, which have been reported to inhibit cysteine, serine and metalloproteases, respectively. Remarkably, accumulation of all three RPs is enhanced by each PI similarly, suggesting that the mechanism of degradation of unrelated RPs follows a common pathway. Inhibitory functions HsTIMP and SlCYS8 are required to enhance RP accumulation, suggesting that their target proteases may degrade RPs. Different PIs additively enhance RP accumulation, but the effect of each PI is dose-dependent. Activity-based protein profiling (ABPP) revealed that the activities of papain-like Cys proteases (PLCPs), Ser hydrolases (SHs) or vacuolar processing enzymes (VPEs) in leaves are unaffected upon expression of the new PIs, whereas SlCYS8 expression specifically suppresses PLCP activity only. Quantitative proteomics indicates that the three new PIs affect agroinfiltrated tissues similarly and that they all increase immune responses. NbPR4, NbPot1 and HsTIMP can be used to study plant proteases and improve RP accumulation in molecular farming.


Asunto(s)
Nicotiana/metabolismo , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Proteínas Recombinantes/metabolismo , Inmunidad de la Planta , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Proteínas Inhibidoras de Proteinasas Secretoras/genética , Proteolisis , Proteoma , Nicotiana/genética
4.
Chemistry ; 21(30): 10721-8, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-26079733

RESUMEN

Polyacetylenes are a class of alkyne-containing natural products. Although potent bioactivities and thus possible applications as chemical probes have already been reported for some polyacetylenes, insights into the biological activities or molecular mode of action are still rather limited in most cases. To overcome this limitation, we describe the application of the polyacetylene callyspongynic acid in the development of an experimental roadmap for characterizing potential protein targets of alkyne-containing natural products. To this end, we undertook the first chemical synthesis of callyspongynic acid. We then used in situ chemical proteomics methods to demonstrate extensive callyspongynic acid-mediated chemical tagging of endoplasmic reticulum-associated lipid-metabolizing and modifying enzymes. We anticipate that an elucidation of protein targets of natural products may serve as an effective guide to the development of subsequent biological assays that aim to identify chemical phenotypes and bioactivities.


Asunto(s)
Alquinos/metabolismo , Productos Biológicos/metabolismo , Retículo Endoplásmico/enzimología , Poliinos/metabolismo , Alquinos/química , Animales , Productos Biológicos/química , Retículo Endoplásmico/metabolismo , Células HEK293 , Células HeLa , Humanos , Metabolismo de los Lípidos , Poliinos/química , Proteínas/metabolismo , Proteómica/métodos
5.
Environ Microbiome ; 19(1): 36, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831353

RESUMEN

BACKGROUND: Microbial communities are important drivers of global biogeochemical cycles, xenobiotic detoxification, as well as organic matter decomposition. Their major metabolic role in ecosystem functioning is ensured by a unique set of enzymes, providing a tremendous yet mostly hidden enzymatic potential. Exploring this enzymatic repertoire is therefore not only relevant for a better understanding of how microorganisms function in their natural environment, and thus for ecological research, but further turns microbial communities, in particular from extreme habitats, into a valuable resource for the discovery of novel enzymes with potential applications in biotechnology. Different strategies for their uncovering such as bioprospecting, which relies mainly on metagenomic approaches in combination with sequence-based bioinformatic analyses, have emerged; yet accurate function prediction of their proteomes and deciphering the in vivo activity of an enzyme remains challenging. RESULTS: Here, we present environmental activity-based protein profiling (eABPP), a multi-omics approach that extends genome-resolved metagenomics with mass spectrometry-based ABPP. This combination allows direct profiling of environmental community samples in their native habitat and the identification of active enzymes based on their function, even without sequence or structural homologies to annotated enzyme families. eABPP thus bridges the gap between environmental genomics, correct function annotation, and in vivo enzyme activity. As a showcase, we report the successful identification of active thermostable serine hydrolases from eABPP of natural microbial communities from two independent hot springs in Kamchatka, Russia. CONCLUSIONS: By reporting enzyme activities within an ecosystem in their native state, we anticipate that eABPP will not only advance current methodological approaches to sequence homology-guided enzyme discovery from environmental ecosystems for subsequent biocatalyst development but also contributes to the ecological investigation of microbial community interactions by dissecting their underlying molecular mechanisms.

6.
Cell Chem Biol ; 30(6): 573-590.e6, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37130519

RESUMEN

The natural product family of the fusicoccanes (FCs) has been shown to display anti-cancer activity, especially when combined with established therapeutic agents. FCs stabilize 14-3-3 protein-protein interactions (PPIs). Here, we tested combinations of a small library of FCs with interferon α (IFNα) on different cancer cell lines and report a proteomics approach to identify the specific 14-3-3 PPIs that are induced by IFNα and stabilized by FCs in OVCAR-3 cells. Among the identified 14-3-3 target proteins are THEMIS2, receptor interacting protein kinase 2 (RIPK2), EIF2AK2, and several members of the LDB1 complex. Biophysical and structural biology studies confirm these 14-3-3 PPIs as physical targets of FC stabilization, and transcriptome as well as pathway analyses suggest possible explanations for the observed synergistic effect of IFNα/FC treatment on cancer cells. This study elucidates the polypharmacological effects of FCs in cancer cells and identifies potential targets from the vast interactome of 14-3-3s for therapeutic intervention in oncology.


Asunto(s)
Interferón-alfa , Neoplasias Ováricas , Humanos , Femenino , Interferón-alfa/farmacología , Apoptosis , Línea Celular Tumoral , Muerte Celular
7.
ACS Chem Biol ; 18(5): 1076-1088, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37115018

RESUMEN

Plant phytohormone pathways are regulated by an intricate network of signaling components and modulators, many of which still remain unknown. Here, we report a forward chemical genetics approach for the identification of functional SA agonists in Arabidopsis thaliana that revealed Neratinib (Ner), a covalent pan-HER kinase inhibitor drug in humans, as a modulator of SA signaling. Instead of a protein kinase, chemoproteomics unveiled that Ner covalently modifies a surface-exposed cysteine residue of Arabidopsis epoxide hydrolase isoform 7 (AtEH7), thereby triggering its allosteric inhibition. Physiologically, the Ner application induces jasmonate metabolism in an AtEH7-dependent manner as an early response. In addition, it modulates PATHOGENESIS RELATED 1 (PR1) expression as a hallmark of SA signaling activation as a later effect. AtEH7, however, is not the exclusive target for this physiological readout induced by Ner. Although the underlying molecular mechanisms of AtEH7-dependent modulation of jasmonate signaling and Ner-induced PR1-dependent activation of SA signaling and thus defense response regulation remain unknown, our present work illustrates the powerful combination of forward chemical genetics and chemical proteomics for identifying novel phytohormone signaling modulatory factors. It also suggests that marginally explored metabolic enzymes such as epoxide hydrolases may have further physiological roles in modulating signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Epóxido Hidrolasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácido Salicílico/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Front Microbiol ; 12: 734039, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095781

RESUMEN

Activity-based protein profiling (ABPP) has so far scarcely been applied in Archaea in general and, especially, in extremophilic organisms. We herein isolated a novel Thermococcus strain designated sp. strain 2319x1E derived from the same enrichment culture as the recently reported Thermococcus sp. strain 2319x1. Both strains are able to grow with xylan as the sole carbon and energy source, and for Thermococcus sp. strain 2319x1E (optimal growth at 85°C, pH 6-7), the induction of xylanolytic activity in the presence of xylan was demonstrated. Since the solely sequence-based identification of xylanolytic enzymes is hardly possible, we established a complementary approach by conducting comparative full proteome analysis in combination with ABPP using α- or ß-glycosidase selective probes and subsequent mass spectrometry (MS)-based analysis. This complementary proteomics approach in combination with recombinant protein expression and classical enzyme characterization enabled the identification of a novel bifunctional maltose-forming α-amylase and deacetylase (EGDIFPOO_00674) belonging to the GH57 family and a promiscuous ß-glycosidase (EGIDFPOO_00532) with ß-xylosidase activity. We thereby further substantiated the general applicability of ABPP in archaea and expanded the ABPP repertoire for the identification of glycoside hydrolases in hyperthermophiles.

9.
Methods Mol Biol ; 1491: 23-46, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27778279

RESUMEN

Bioreactive natural products represent versatile starting points for the development of structurally unique activity-based probes. In the present protocol, we describe the workflow for an activity-based protein profiling (ABPP) experiment with an alkyne-tagged natural product derivative. Our protocol includes experimental procedures for in vivo labeling, sample preparation and 2-step (click chemistry) visualization and sample preparation for mass spectrometry-based target identification.


Asunto(s)
Productos Biológicos/química , Sondas Moleculares/química , Proteínas/química , Química Clic , Células Hep G2 , Humanos , Proteoma
10.
PLoS One ; 12(1): e0168183, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28056027

RESUMEN

Aquatic environments are heavily impacted by human activities including climate warming and the introduction of xenobiotics. Due to the application of silver nanoparticles as bactericidal agent the introduction of silver into the environment strongly has increased during the past years. Silver ions affect the primary metabolism of algae, in particular photosynthesis. Mixotrophic algae are an interesting test case as they do not exclusively rely on photosynthesis which may attenuate the harmful effect of silver. In order to study the effect of silver ions on mixotrophs, cultures of the chrysophyte Poterioochromonas malhamensis were treated in a replicate design in light and darkness with silver nitrate at a sub-lethal concentration. At five time points samples were taken for the identification and quantitation of proteins by mass spectrometry. In our analysis, relative quantitative protein mass spectrometry has shown to be a useful tool for functional analyses in conjunction with transcriptome reference sequences. A total of 3,952 proteins in 63 samples were identified and quantified, mapping to 4,829 transcripts of the sequenced and assembled transcriptome. Among them, 720 and 104 proteins performing various cellular functions were differentially expressed after eight days in light versus darkness and after three days of silver treatment, respectively. Specifically pathways of the energy and primary carbon metabolism were differentially affected by light and the utilization of expensive reactions hints to an energy surplus of P. malhamensis under light conditions. The excess energy is not invested in growth, but in the synthesis of storage metabolites. The effects of silver were less explicit, observable especially in the dark treatments where the light effect could not mask coinciding but weaker effects of silver. Photosynthesis, particularly the light harvesting complexes, and several sulphur containing enzymes were affected presumably due to a direct interference with the silver ions, mainly affecting energy supply.


Asunto(s)
Eucariontes/efectos de los fármacos , Luz , Proteómica , Plata/toxicidad , Eucariontes/metabolismo , Fotosíntesis/efectos de los fármacos
11.
Nat Commun ; 8: 15352, 2017 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-28480883

RESUMEN

Archaea are characterized by a unique life style in often environmental extremes but their thorough investigation is currently hampered by a limited set of suitable in vivo research methodologies. Here, we demonstrate that in vivo activity-based protein profiling (ABPP) may be used to sensitively detect either native or heterogeneously expressed active enzymes in living archaea even under these extreme conditions. In combination with the development of a genetically engineered archaeal screening strain, ABPP can furthermore be used in functional enzyme screenings from (meta)genome samples. We anticipate that our ABPP approach may therefore find application in basic archaeal research but also in the discovery of novel enzymes from (meta)genome libraries.


Asunto(s)
Proteínas Arqueales/metabolismo , Extremófilos/metabolismo , Hidrolasas/metabolismo , Proteómica/métodos , Espectrometría de Masas , Reproducibilidad de los Resultados , Serina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA