Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(17): e2115346119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35446685

RESUMEN

The Eocene­Oligocene Transition (∼33.9 Ma) marks the largest step transformation within the Cenozoic cooling trend and is characterized by a sudden growth of the Antarctic ice sheets, cooling of the interior ocean, and the establishment of strong meridional temperature gradients. Here we examine the climatic impact of oceanic gateway changes at the Eocene­Oligocene Transition by implementing detailed paleogeographic reconstructions with realistic paleobathymetric models for the Atlantic­Arctic basins in a state-of-the-art earth system model (the Norwegian Earth System Model [NorESM-F]). We demonstrate that the warm Eocene climate is highly sensitive to depth variations of the Greenland­Scotland Ridge and the proto­Fram Strait as they control the freshwater leakage from the Arctic to the North Atlantic. Our results, and proxy evidence, suggest that changes in these gateways controlled the ocean circulation and played a critical role in the growth of land-based ice sheets, alongside CO2-driven global cooling. Specifically, we suggest that a shallow connection between the Arctic and North Atlantic restricted the southward flow of fresh surface waters during the Late Eocene allowing for a North Atlantic overturning circulation. Consequently, the Southern Hemisphere cooled by several degrees paving the way for the glaciation of Antarctica. Shortly after, the connection to the Arctic deepened due to weakening dynamic support from the Iceland Mantle Plume. This weakened the North Atlantic overturning and cooled the Northern Hemisphere, thereby promoting glaciations there. Our study points to a controlling role of the Northeast Atlantic gateways and decreasing atmospheric CO2 in the onset of glaciations in both hemispheres.

2.
Sci Rep ; 14(1): 10387, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710717

RESUMEN

Tropical Small Island Developing States (SIDS), such as those in the Caribbean, are among the most vulnerable to the impacts of climate change, most notably sea-level rise. The current sea-level rise in the Caribbean is 3.40 ± 0.3 mm/year (1993-2019), which is similar to the 3.25 ± 0.4 mm/year global mean sea-level (GMSL) rise (1993-2018). Throughout the year, Caribbean seasonal sea-level variability is found to respond to sea surface temperature variability. Over the past few decades, the trend in Caribbean Sea-level rise is also found to be variable. Satellite altimetry and steric sea-level records of the Caribbean region reveal a shift in the late 2003-early 2004, which separates two distinct periods of sea-level rise. Thermal expansion dominates the sea-level trend from 1993-2003. Following this period, there is an increased trend in sea-level rise, with a dominance of mass changes from 2004-2019, as confirmed by GRACE data. During this period, the sea-level trend is 6.15 ± 0.5 mm/year, which is 67% faster than the most recent estimates of global mean sea-level rise provided by the Intergovernmental Panel on Climate Change (3.69 ± 0.5 mm/year for the period 2006-2018). Despite its reduced importance, increasing temperatures contribute greatly to sea-level rise in the Caribbean region through thermal expansion of ocean water, hence there is a need to limit the current trend of global warming.

3.
Nature ; 430(7002): 842-3, 2004 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-15318205
4.
Nat Commun ; 4: 1499, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23422667

RESUMEN

The mid-Pliocene warm period is a recent warm geological period that shares similarities with predictions of future climate. It is generally held the mid-Pliocene Atlantic Meridional Overturning Circulation must have been stronger, to explain a weak Atlantic meridional δ(13)C gradient and large northern high-latitude warming. However, climate models do not simulate such stronger Atlantic Meridional Overturning Circulation, when forced with mid-Pliocene boundary conditions. Proxy reconstructions allow for an alternative scenario that the weak δ(13)C gradient can be explained by increased ventilation and reduced stratification in the Southern Ocean. Here this alternative scenario is supported by simulations with the Norwegian Earth System Model (NorESM-L), which simulate an intensified and slightly poleward shifted wind field off Antarctica, giving enhanced ventilation and reduced stratification in the Southern Ocean. Our findings challenge the prevailing theory and show how increased Southern Ocean ventilation can reconcile existing model-data discrepancies about Atlantic Meridional Overturning Circulation while explaining fundamental ocean features.

5.
Sci Rep ; 3: 2013, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23774736

RESUMEN

The mid-Piacenzian climate represents the most geologically recent interval of long-term average warmth relative to the last million years, and shares similarities with the climate projected for the end of the 21(st) century. As such, it represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. Here, we present the first systematic comparison of Pliocene sea surface temperature (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) with the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional and dynamic situations where there is discord between the palaeoenvironmental reconstruction and the climate model simulations. These differences have led to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction.

6.
Science ; 313(5786): 492-5, 2006 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-16794038

RESUMEN

We propose that from approximately 3 to 1 million years ago, ice volume changes occurred in both the Northern and Southern Hemispheres, each controlled by local summer insolation. Because Earth's orbital precession is out of phase between hemispheres, 23,000-year changes in ice volume in each hemisphere cancel out in globally integrated proxies such as ocean delta18O or sea level, leaving the in-phase obliquity (41,000 years) component of insolation to dominate those records. Only a modest ice mass change in Antarctica is required to effectively cancel out a much larger northern ice volume signal. At the mid-Pleistocene transition, we propose that marine-based ice sheet margins replaced terrestrial ice margins around the perimeter of East Antarctica, resulting in a shift to in-phase behavior of northern and southern ice sheets as well as the strengthening of 23,000-year cyclicity in the marine delta18O record.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA