Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 123(3): 918-988, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36542732

RESUMEN

Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.


Asunto(s)
Imagen por Resonancia Magnética , Protones , Resonancia Magnética Nuclear Biomolecular , Espectroscopía de Resonancia Magnética/métodos , Proteínas de la Membrana
2.
J Am Chem Soc ; 146(29): 20183-20192, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39002137

RESUMEN

Polymer-based organic cathode materials have shown immense promise for lithium storage, owing to their structural diversity and functional group tunability. However, designing appropriate high-performance cathode materials with a high-rate capability and long cycle life remains a significant challenge. It is quintessential to design polymer-based electrodes with lithiophilic linkages. Herein, we design a bifurcated dibenzamide (DBA) linkage having lithiophilic functionalities. 1H NMR has been used as an experimental tool to understand the lithiophilic nature of the DBAs. Considering the strong Li+ affinity of DBAs, a series of polybenzamides have been designed as lithium storage systems. The design of porous polybenzamides consists of amides as only redox-active functionalities, and the rest are inactive phenyl units. Porous polybenzamides, when tested as cathodes against a Li-metal anode, displayed high capacity and rate performance, demonstrating their redox activity. The most efficient polybenzamide (TAm-TA) delivered a specific capacity of 248 mA h g-1 at 1C. TAm-TA retained 63% of its specific capacity at a very high rate of 10C (157 mA h g-1). Notably, polybenzamides displayed a capacity enhancement during long cycling, tending to achieve their theoretical capacity. Long cycling stability tests over 3000 cycles at a rate of 1.3C and over 6000 cycles at elevated rates (5C to 40C) demonstrate the electrochemical robustness of dibenzamide linkages. Finally, two full-cell experiments using TAm-TA as both cathode and anode were conducted, which delivered high capacity, demonstrating that TAm-TA is a promising candidate for Li+-ion batteries (LIBs). Furthermore, the ex situ Fourier transform infrared (FT-IR), X-ray photoemission spectroscopy (XPS), and density functional theory (DFT) studies revealed the stepwise lithiation/delithiation mechanism for polybenzamides.

3.
Anal Chem ; 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034533

RESUMEN

Dabrafenib (DBF), an anticancer drug, exhibits isostructural properties in its hydrate (DBF⊃H2O) and perhydrate (DBF⊃H2O2) forms, as revealed by single-crystal X-ray diffraction. Despite the H2O and H2O2 solvent molecules occupying identical locations, the two polymorphs have different thermal behaviors. In general, determination of stoichiometry of H2O in the perhydrate crystals is difficult due to the presence of both H2O and H2O2 in the same crystal voids. This study utilizes magic-angle spinning (MAS) solid-state NMR (SSNMR) combined with gauge-included projector augmented wave calculations to characterize the influence of solvent molecules on the local environment in pseudopolymorphs. SSNMR experiments were employed to assign 1H, 13C, and 15N peaks and identify spectral differences in the isostructural pseudopolymorphs. Proton spectroscopy at fast MAS was used to identify and quantify H2O2/H2O in DBF⊃H2O2 (mixed hydrate/perhydrate). 1H-1H dipolar-coupling-based experiments were recruited to confirm the 3D molecular packing of solvent molecules in DBF⊃H2O and DBF⊃H2O2. Homonuclear (1H-1H) and heteronuclear (1H-14N) distance measurements, in conjunction with diffraction structures and optimized hydrogen atom positions by density functional theory, helped decipher local interactions of H2O2 with DBF and their geometry in DBF⊃H2O2. This integrated X-ray structure, quantum chemical calculations, and NMR study of pseudopolymorphs offer a practical approach to scrutinizing crystallized solvent interactions in the crystal lattice even without high-resolution crystal structures or artificial sample enrichment.

4.
Solid State Nucl Magn Reson ; 130: 101921, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422809

RESUMEN

The development of NMR crystallography methods requires a reliable database of chemical shifts measured for systems with known crystal structure. We measured and assigned carbon and hydrogen chemical shifts of twenty solid natural amino acids of known polymorphic structure, meticulously determined using powder X-ray diffraction. We then correlated the experimental data with DFT-calculated isotropic shieldings. The small size of the unit cell of most amino acids allowed for advanced computations using various families of DFT functionals, including generalized gradient approximation (GGA), meta-GGA and hybrid DFT functionals. We tested several combinations of functionals for geometry optimizations and NMR calculations. For carbon shieldings, the widely used GGA functional PBE performed very well, although an improvement could be achieved by adding shielding corrections calculated for isolated molecules using a hybrid functional. For hydrogen nuclei, we observed the best performance for NMR calculations carried out with structures optimized at the hybrid DFT level. The high fidelity of the calculations made it possible to assign additional signals that could not be assigned based on experiments alone, for example signals of two non-equivalent molecules in the unit cell of some of the amino acids.


Asunto(s)
Aminoácidos , Carbono , Cristalografía , Espectroscopía de Resonancia Magnética/métodos , Hidrógeno
5.
Angew Chem Int Ed Engl ; 63(13): e202316873, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38324467

RESUMEN

ß-Keto-enamine-linked 2D covalent organic frameworks (COFs) have emerged as highly robust materials, showing significant potential for practical applications. However, the exclusive reliance on 1,3,5-triformylphloroglucinol (Tp aldehyde) in the design of such COFs often results in the production of non-porous amorphous polymers when combined with certain amine building blocks. Attempts to adjust the crystallinity and porosity by a modulator approach are inefficient because Tp aldehyde readily forms stable ß-keto-enamine-linked monomers/oligomers with various aromatic amines through an irreversible keto-enol tautomerization process. Our research employed a unique protection-deprotection strategy to enhance the crystallinity and porosity of ß-keto-enamine-linked squaramide-based 2D COFs. Advanced solid-state NMR studies, including 1D 13 C CPMAS, 1 H fast MAS, 15 N CPMAS, 2D 13 C-1 H correlation, 1 H-1 H DQ-SQ, and 14 N-1 H HMQC NMR were used to establish the atomic-level connectivity within the resultant COFs. The TpOMe -Sqm COFs synthesized utilizing this strategy have a surface area of 487 m2 g-1 , significantly higher than similar COFs synthesized using Tp aldehyde. Furthermore, detailed time-dependent PXRD, solid-state 13 C CPMAS NMR, and theoretical DFT studies shed more light on the crystallization and linkage conversion processes in these 2D COFs. Ultimately, we applied this protection-deprotection method to construct novel keto-enamine-linked highly porous organic polymers with a surface area of 1018 m2 g-1 .

6.
Angew Chem Int Ed Engl ; 63(21): e202401005, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38584128

RESUMEN

Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of electrocatalytic mechanisms and the structure-activity relationship of electrocatalysts. However, achieving this goal remains a formidable challenge because of the electrochemical instability observed in most PCPs. Herein, we develop a "modular design" strategy to construct electrochemically stable semiconducting PCP, namely, Fe-pyNDI, which incorporates a chain-type Fe-pyrazole metal cluster and π-stacking column with effective synergistic effects. The three-dimensional electron diffraction (3D ED) technique resolves the precise structure. Both theoretical and experimental investigation confirms that the π-stacking column in Fe-pyNDI can provide an efficient electron transport path and enhance the structural stability of the material. As a result, Fe-pyNDI can serve as an efficient model electrocatalyst for nitrate reduction reaction (NO3RR) to ammonia with a superior ammonia yield of 339.2 µmol h-1 cm-2 (14677 µg h-1 mgcat. -1) and a faradaic efficiency of 87 % at neutral electrolyte, which is comparable to state-of-the-art electrocatalysts. The in-situ X-ray absorption spectroscopy (XAS) reveals that during the reaction, the structure of Fe-pyNDI can be kept, while part of the Fe3+ in Fe-pyNDI was reduced in situ to Fe2+, which serves as the potential active species for NO3RR.

7.
J Am Chem Soc ; 145(26): 14475-14483, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37339245

RESUMEN

Few-layer organic nanosheets are becoming increasingly attractive as two-dimensional (2D) materials due to their precise atomic connectivity and tailor-made pores. However, most strategies for synthesizing nanosheets rely on surface-assisted methods or top-down exfoliation of stacked materials. A bottom-up approach with well-designed building blocks would be the convenient pathway to achieve the bulk-scale synthesis of 2D nanosheets with uniform size and crystallinity. Herein, we have synthesized crystalline covalent organic framework nanosheets (CONs) by reacting tetratopic thianthrene tetraaldehyde (THT) and aliphatic diamines. The bent geometry of thianthrene in THT retards the out-of-plane stacking, while the flexible diamines introduce dynamic characteristics into the framework, facilitating nanosheet formation. Successful isoreticulation with five diamines with two to six carbon chain lengths generalizes the design strategy. Microscopic imaging reveals that the odd and even diamine-based CONs transmute to different nanostructures, such as nanotubes and hollow spheres. The single-crystal X-ray diffraction structure of repeating units indicates that the odd-even linker units of diamines introduce irregular-regular curvature in the backbone, aiding such dimensionality conversion. Theoretical calculations shed more light on nanosheet stacking and rolling behavior with respect to the odd-even effects.

8.
J Am Chem Soc ; 145(43): 23802-23813, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37870913

RESUMEN

The conversion of CO2 to a sole carbonaceous product using photocatalysis is a sustainable solution for alleviating the increasing levels of CO2 emissions and reducing our dependence on nonrenewable resources such as fossil fuels. However, developing a photoactive, metal-free catalyst that is highly selective and efficient in the CO2 reduction reaction (CO2RR) without the need for sacrificial agents, cocatalysts, and photosensitizers is challenging. Furthermore, due to the poor solubility of CO2 in water and the kinetically and thermodynamically favored hydrogen evolution reaction (HER), designing a highly selective photocatalyst is challenging. Here, we propose a molecular engineering approach to design a photoactive polymer with high CO2 permeability and low water diffusivity, promoting the mass transfer of CO2 while suppressing HER. We have incorporated a contorted triptycene scaffold with "internal molecular free volume (IMFV)" to enhance gas permeability to the active site by creating molecular channels through the inefficient packing of polymer chains. Additionally, we introduced a pyrene moiety to promote visible-light harvesting capability and charge separation. By leveraging these qualities, the polymer exhibited a high CO generation rate of 77.8 µmol g-1 h-1, with a high selectivity of ∼98% and good recyclability. The importance of IMFV was highlighted by replacing the contorted triptycene unit with a planar scaffold, which led to a selectivity reversal favoring HER over CO2RR in water. In situ electron paramagnetic resonance (EPR), time-resolved photoluminescence spectroscopy (TRPL), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) techniques, further supported by theoretical calculations, were employed to enlighten the mechanistic insight for metal-free CO2 reduction to exclusively CO in water.

9.
Solid State Nucl Magn Reson ; 125: 101874, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37216831

RESUMEN

The mutual orientation of nuclear spin interaction tensors provides critical information on the conformation and arrangement of molecules in chemicals, materials, and biological systems at an atomic level. Proton is a ubiquitous and important element in a variety of substances, and its NMR is highly sensitive due to their virtually 100% natural abundance and large gyromagnetic ratio. Nevertheless, the measurement of mutual orientation between the 1H CSA tensors has remained largely untouched in the past due to strong 1H-1H homonuclear interactions in a dense network of protons. In this study, we have developed a proton-detected 3D 1H CSA/1H CSA/1H CS correlation method that utilizes three techniques to manage homonuclear interactions, namely fast magic-angle spinning, windowless C-symmetry-based CSA recoupling (windowless-ROCSA), and a band-selective 1H-1H polarization transfer. The asymmetric 1H CSA/1H CSA correlated powder patterns produced by the C-symmetry-based methods are highly sensitive to the sign and asymmetry parameter of the 1H CSA, and the Euler angle ß as compared to the symmetric pattern obtained by the existing γ-encoded R-symmetry-based CSA/CSA correlation methods and allows a larger spectral area for data fitting. These features are beneficial for determining the mutual orientation between the nuclear spin interaction tensors with improved accuracy.


Asunto(s)
Imagen por Resonancia Magnética , Protones , Espectroscopía de Resonancia Magnética/métodos
10.
Angew Chem Int Ed Engl ; 62(20): e202300652, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36929620

RESUMEN

Covalent organic nanotubes (CONTs) are porous one-dimensional frameworks connected through imine bonds via Schiff base condensation between aldehydes and amines. The presence of two amine groups at the ortho position in the structurally demanding tetraaminotriptycene (TAT) building block leads to multiple reaction pathways between the ditopic aldehyde and the tetratopic amine. We have synthesized five different monomers of CONT-1 by the Schiff base condensation reaction between TAT and o-anisaldehyde. The conversion of imine to imidazole bonding in a monomer is probed using NMR, mass spectrometry, and X-ray diffraction techniques. Solid-state NMR provide insights into the CONTs' structural connectivity. A theoretical investigation suggests that the π-π stacking could be the driving force for rapid imine to imidazole conversion within the CONT-1. Microscopic imaging sheds further light on the self-assembly process of the CONTs, indicating both head-to-head and side-by-side assembly.

11.
Angew Chem Int Ed Engl ; 62(47): e202312095, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37743667

RESUMEN

Crystalline triazine-based covalent organic frameworks (COFs) are aromatic nitrogen-rich porous materials. COFs typically show high thermal/chemical stability, and are promising for energy applications, but often require harsh synthesis conditions and suffer from low crystallinity. In this work, we propose an environmentally friendly route for the synthesis of crystalline COFs from CO2 molecules as a precursor. The mass ratio of CO2 conversion into COFs formula unit reaches 46.3 %. The synthesis consists of two steps; preparation of 1,4-piperazinedicarboxaldehyde from CO2 and piperazine, and condensation of the dicarboxaldehyde and melamine to construct the framework. The CO2 -derived COF has a 3-fold interpenetrated structure of 2D layers determined by powder X-ray diffraction, high-resolution transmission electron microscopy, and select-area electron diffraction. The structure shows a high Brunauer-Emmett-Teller surface area of 945 m2 g-1 and high stability against strong acid (6 M HCl), base (6 M NaOH), and boiling water over 24 hours. Post-modification of the framework with oxone has been demonstrated to modulate hydrophilicity, and it exhibits proton conductivity of 2.5×10-2  S cm-1 at 85 °C, 95 % of relative humidity.

12.
Angew Chem Int Ed Engl ; 62(2): e202215234, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36377418

RESUMEN

Exploring new porous coordination polymers (PCPs) that have tunable structure and conductivity is attractive but remains challenging. Herein, fine pore structure engineering by ligand conformation control of naphthalene diimide (NDI)-based semiconducting PCPs with π stacking-dependent conductivity tunability is achieved. The π stacking distances and ligand conformation in these isoreticular PCPs were modulated by employing metal centers with different coordination geometries. As a result, three conjugated PCPs (Co-pyNDI, Ni-pyNDI, and Zn-pyNDI) with varying pore structure and conductivity were obtained. Their crystal structures were determined by three-dimensional electron diffraction. The through-space charge transfer and tunable pore structure in these PCPs result in modulated selectivity and sensitivity in gas sensing. Zn-pyNDI can serve as a room-temperature operable chemiresistive sensor selective to acetone.

13.
J Am Chem Soc ; 144(39): 18023-18029, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36109169

RESUMEN

Dynamic nuclear polarization (DNP) using transient electron spin polarization generated by photoexcitation can improve nuclear magnetic resonance (NMR) sensitivity far beyond the thermal equilibrium limit for analysis in life science and drug discovery. However, DNP of liquid water at room temperature remains an important challenge. Here, we propose a new method called hyperpolarization relay, in which the nonequilibrium polarization of electron spins is transferred to proton spins in the nanocrystals and then to proton spins in bulk water. Molecular nanocrystals doped with a polarizing agent that generates a highly polarized photoexcited triplet are synthesized by a reprecipitation method while controlling the size of the nanocrystals. The triplet-DNP sequence of repeated laser and microwave irradiation enhances the NMR signal of bulk water as well as nanocrystals. The smaller size of the nanocrystals increases the efficiency of polarization transfer from the nanocrystals to water due to the increased surface area. A series of control experiments and simulations based on Solomon equations confirmed the hyperpolarization relay mechanism.


Asunto(s)
Nanopartículas , Agua , Espectroscopía de Resonancia Magnética/métodos , Microondas , Protones
14.
J Am Chem Soc ; 144(35): 16052-16059, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-35998367

RESUMEN

Covalent organic nanotubes (CONTs) are one-dimensional porous frameworks constructed from organic building blocks via dynamic covalent chemistry. CONTs are synthesized as insoluble powder that restricts their potential applications. The judicious selection of 2,2'-bipyridine-5,5'-dicarbaldehyde and tetraaminotriptycene as building blocks for TAT-BPy CONTs has led to constructing flexible yet robust and self-standing fabric up to 3 µm thickness. The TAT-BPy CONTs and TAT-BPy CONT fabric have been characterized by solid-state one-dimensional (1D) 13C CP-MAS, two-dimensional (2D) 13C-1H correlation NMR, 2D 1H-1H DQ-SQ NMR, and 2D 14N-1H correlation NMR spectroscopy. The mechanism of fabric formation has been established by using high-resolution transmission electron microscopy and scanning electron microscopy techniques. The as-synthesized viscoelastic TAT-BPy CONT fabric exhibits high mechanical strength with a reduced modulus (Er) of 8 (±3) GPa and hardness (H) of 0.6 (±0.3) GPa. Interestingly, the viscoelastic fabric shows time-dependent elastic depth recovery up to 50-70%.

15.
Inorg Chem ; 61(40): 16103-16109, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36154003

RESUMEN

Glassy-state coordination polymers (CPs) are a new class of network-forming glasses. In this work, we constructed glass-forming CPs composed of both anionic and neutral ligands as network formers. With the use of hexafluoro anions (MF62-) and 1,3-bis(4-pyridyl)propane (bpp), two isostructural CP crystals, [Zn(SiF6)(bpp)2] (ZnSi) and [Zn(TiF6)(bpp)2] (ZnTi), were synthesized. Solid-state 19F NMR revealed rotational motion of MF62- with dissociation and re-formation of the Zn-F coordination bonds in both CP crystals, which reflects the thermodynamic parameters related to the glass formability. The mobility of SiF62- is larger than that of TiF62-, suggesting a higher glass formability of ZnSi. When mechanical ball milling was conducted, ZnSi completely changed into a glassy state, whereas ZnTi showed incomplete glass formation. Examination of the amorphous structures elucidated retention and partial destruction of the Zn-F coordination bonds in ball-milled ZnSi and ZnTi, respectively. These results provide the relationship between the ligand dynamics and glass formability of CPs.

16.
Phys Chem Chem Phys ; 24(18): 10717-10726, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35315474

RESUMEN

Detecting proton and nitrogen correlations in solid-state nuclear magnetic resonance (NMR) is important for the structural determination of biological and chemical systems. Recent advances in proton detection-based approaches under fast magic-angle spinning have facilitated the detection of 1H-14N correlations by solid-state NMR. However, observing remote 1H-14N correlations by these approaches is still a challenge, especially for 14N sites having large quadrupolar couplings. To address this issue, we introduce the 1H-14N overtone continuous wave rotational-echo saturation-pulse double-resonance (1H-14N OT CW-RESPDOR) sequence. Unlike regular 2D correlation experiments where the indirect dimension is recorded in the time domain, the 1H-14N OT CW-RESPDOR experiment is directly observed in the frequency domain. A set of 1H-14N OT CW-RESPDOR filtered 1H spectra is recorded at varying 14N OT frequencies. Thanks to the selective nature of the 14N OT pulse, the filtered 1H spectra appear only if the 14N OT frequency hits the positions of the 14N OT central band or one of the spinning sidebands. This set of filtered 1H spectra represents a 2D 1H-14N OT correlation map. We have also investigated the optimizable parameters for CW-RESPDOR and figured out that these parameters are not strictly needed for our working magnetic field of 14.1 T. Hence, the experiment is easy to set up and requires almost no optimization. We have demonstrated the experimental feasibility of 1H-14N OT CW-RESPDOR on monoclinic L-histidine and L-alanyl L-alanine. The remote 1H-14N correlations have been efficiently detected, no matter how large the 14N quadrupolar interaction is, and agree with the crystal structures. In addition, based on the remote 1H-14N correlations from the non-protonated 14N site of L-histidine, we can unambiguously distinguish the orthorhombic and monoclinic forms.


Asunto(s)
Histidina , Protones , Histidina/química , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Nitrógeno
17.
Solid State Nucl Magn Reson ; 117: 101774, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35051807

RESUMEN

Fast magic-angle spinning (≥60 â€‹kHz) technique has enabled the acquisition of high-resolution 1H NMR spectra of solid materials. However, the spectral interpretation is still difficult because the 1H peaks are overlapped due to the narrow chemical shift range and broad linewidths. An additional 13C or 14N or 1H dimension possibly addresses the issues of overlapped proton resonances, but it leads to the elongated experimental time. Herein, we introduce a single-channel 1H experiment to separate the overlapped 1H peak and identify its spatially proximal 1H-1H correlations. This sequence combines selective excitation, selective 1H-1H polarization transfer by selective recoupling of protons (SERP), and broadband 1H recoupling by back-to-back (BABA) recoupling sequences. The concept for 1H separation is based on (i) the selective excitation of a well-resolved 1H peak and (ii) the selective dipolar polarization transfer from this isolated 1H peak to one of the 1H peaks in the overlapped/poor resolution region by SERP and (iii) the detection of 1H-1H correlations from these two 1H peaks to other neighboring 1Hs by BABA. We demonstrated the applicability of this approach to identify overlapped peaks on two molecules, ß-L-aspartyl-l-alanine and Pioglitazone.HCl. The sequence allows the clear observation of 1H-1H correlations from an overlapped 1H peak without an additional heteronuclear dimension and ensures efficient polarization transfers that leads to twelve fold reduction in experimental time compared to 14N edited experiments. The limitation and the conditions of applicability for this approach are discussed in detail.


Asunto(s)
Imagen por Resonancia Magnética , Protones , Espectroscopía de Resonancia Magnética/métodos
18.
Solid State Nucl Magn Reson ; 120: 101808, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35780556

RESUMEN

Analysis of short-to-intermediate range intermolecular interactions offers a great way of characterizing the solid-state organization of small molecules and materials. This can be achieved by two-dimensional (2D) homo- and heteronuclear correlation NMR spectroscopy, for example, by carrying out experiments at high magnetic fields in conjunction with fast magic-angle spinning (MAS) techniques. But, detecting 2D peaks for heteronuclear dipolar coupled spin pairs separated by greater than 3 Å is not always straightforward, particularly when low-gamma quadrupolar nuclei are involved. Here, we present a 2D correlation NMR experiment that combines the advantages of heteronuclear-multiple quantum coherence (HMQC) and proton-based spin-diffusion (SD) pulse sequences using radio-frequency-driven-recouping (RFDR) to probe inter and intramolecular 1H-X (X = 14N, 35Cl) interactions. This experiment can be used to acquire 2D 1H{X}-HMQC filtered 1H-1H correlation as well as 2D 1H-X HMQC spectra. Powder forms of dopamine·HCl and l-histidine·HCl·H2O are characterized at high fields (21.1 T and 18.8 T) with fast MAS (60 kHz) using the 2D HMQC-SD-RFDR approach. Solid-state NMR results are complemented with NMR crystallography analyses using the gauge-including projector augmented wave (GIPAW) approach. For histidine·HCl·H2O, 2D peaks associated with 14N-1H-1H and 35Cl-1H-1H distances of up to 4.4 and 3.9 Å have been detected. This is further corroborated by the observation of 2D peaks corresponding to 14N-1H-1H and 35Cl-1H-1H distances of up to 4.2 and 3.7 Å in dopamine·HCl, indicating the suitability of the HMQC-SD-RFDR experiments for detecting medium-range proximities in molecular solids.


Asunto(s)
Dopamina , Protones , Histidina/química , Espectroscopía de Resonancia Magnética/métodos , Resonancia Magnética Nuclear Biomolecular
19.
Angew Chem Int Ed Engl ; 61(42): e202210023, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36047567

RESUMEN

The creation of self-healing polymers from commodity olefins is of great interest and importance but has remained a challenge to date. We report here for the first time the synthesis of self-healing polymers by catalyst-controlled polymerization of a simple commodity diene, isoprene. We found that polyisoprenes having an appropriate mixture (ca. 70/30) of 3,4- and cis-1,4-microstructures synthesized by using a half-sandwich scandium catalyst could act as excellent self-healing elastomers without any external intervention. The unprecedented self-healability could be ascribed to nanoscale heterogeneities formed by microphase separation of the relatively hard 3,4-segments from a flexible cis-1,4-segment matrix. The hydrogenated polyisoprenes (without C=C bonds) with the analogous microstructures also exhibited excellent mechanical and self-healing properties, further demonstrating that even simple polyolefins can be made self-healable if the microstructures are appropriately regulated.

20.
Angew Chem Int Ed Engl ; 61(2): e202110695, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34708895

RESUMEN

Although covalent organic frameworks (COFs) with a graphene-like structure present unique chemical and physical properties, they are essentially insoluble and infusible crystalline powders with poor processability, hindering their further practical applications. How to improve the processability of COF materials is a major challenge in this field. In this contribution, we proposed a general side-chain engineering strategy to construct a gel-state COF with high processability. This method takes advantages of large and soft branched alkyl side chains as internal plasticizers to achieve the gelation of the COF. We systematically studied the influence of the length of the side chain on the COF gel formation. Benefitting from their machinability and flexibility, this novel COF gel can be easily processed into gel-type electrolytes with specific shape and thickness, which were further applied to assemble lithium-ion batteries that exhibited high cycling stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA