Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 23(2): 100713, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184013

RESUMEN

Optimizing data-independent acquisition methods for proteomics applications often requires balancing spectral resolution and acquisition speed. Here, we describe a real-time full mass range implementation of the phase-constrained spectrum deconvolution method (ΦSDM) for Orbitrap mass spectrometry that increases mass resolving power without increasing scan time. Comparing its performance to the standard enhanced Fourier transformation signal processing revealed that the increased resolving power of ΦSDM is beneficial in areas of high peptide density and comes with a greater ability to resolve low-abundance signals. In a standard 2 h analysis of a 200 ng HeLa digest, this resulted in an increase of 16% in the number of quantified peptides. As the acquisition speed becomes even more important when using fast chromatographic gradients, we further applied ΦSDM methods to a range of shorter gradient lengths (21, 12, and 5 min). While ΦSDM improved identification rates and spectral quality in all tested gradients, it proved particularly advantageous for the 5 min gradient. Here, the number of identified protein groups and peptides increased by >15% in comparison to enhanced Fourier transformation processing. In conclusion, ΦSDM is an alternative signal processing algorithm for processing Orbitrap data that can improve spectral quality and benefit quantitative accuracy in typical proteomics experiments, especially when using short gradients.


Asunto(s)
Proteoma , Espectrometría de Masas en Tándem , Humanos , Proteoma/metabolismo , Espectrometría de Masas en Tándem/métodos , Péptidos/análisis , Células HeLa , Proteómica/métodos
2.
Plant J ; 118(5): 1439-1454, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38379355

RESUMEN

Aporphine alkaloids are a large group of natural compounds with extensive pharmaceutical application prospects. The biosynthesis of aporphine alkaloids has been paid attentions in the past decades. Here, we determined the contents of four 1-benzylisoquinoline alkaloids and five aporphine alkaloids in root, stem, leaf, and flower of Aristolochia contorta Bunge, which belongs to magnoliids. Two CYP80 enzymes were identified and characterized from A. contorta. Both of them catalyze the unusual C-C phenol coupling reactions and directly form the aporphine alkaloid skeleton. AcCYP80G7 catalyzed the formation of hexacyclic aporphine corytuberine. AcCYP80Q8 catalyzed the formation of pentacyclic proaporphine glaziovine. Kingdom-wide phylogenetic analysis of the CYP80 family suggested that CYP80 first appeared in Nymphaeales. The functional divergence of hydroxylation and C-C (or C-O) phenol coupling preceded the divergence of magnoliids and eudicots. Probable crucial residues of AcCYP80Q8 were selected through sequence alignment and molecular docking. Site-directed mutagenesis revealed two crucial residues E284 and Y106 for the catalytic reaction. Identification and characterization of two aporphine skeleton-forming enzymes provide insights into the biosynthesis of aporphine alkaloids.


Asunto(s)
Alcaloides , Aporfinas , Aristolochia , Sistema Enzimático del Citocromo P-450 , Filogenia , Proteínas de Plantas , Aporfinas/metabolismo , Aristolochia/enzimología , Aristolochia/metabolismo , Aristolochia/genética , Aristolochia/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Alcaloides/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/enzimología , Raíces de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Flores/enzimología , Flores/genética , Flores/metabolismo , Tallos de la Planta/metabolismo , Tallos de la Planta/enzimología , Tallos de la Planta/genética
3.
BMC Genomics ; 25(1): 480, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750582

RESUMEN

Hu sheep (HS), a breed of sheep carrying the FecB mutation gene, is known for its "year-round estrus and multiple births" and is an ideal model for studying the high fecundity mechanisms of livestock. Through analyzing and comparing the genomic selection features of Hu sheep and other sheep breeds, we identified a series of candidate genes that may play a role in Hu sheep's high fecundity mechanisms. In this study, we conducted whole-genome resequencing on six breeds and screened key mutations significantly correlated with high reproductive traits in sheep. Notably, the CC2D1B gene was selected by the fixation index (FST) and the cross-population composite likelihood ratio (XP-CLR) methods in HS and other five breeds. It was worth noting that the CC2D1B gene in HS was different from that in other sheep breeds, and seven missense mutations have been identified. Furthermore, the linkage disequilibrium (LD) analysis revealed a strong linkage disequilibrium in this specific gene region. Subsequently, by performing different grouping based on FecB genotypes in Hu sheep, genome-wide selective signal analysis screened several genes related to reproduction, such as BMPR1B and PPM1K. Besides, FST analysis identified functional genes related to reproductive traits, including RHEB, HSPA2, PPP1CC, HVCN1, and CCDC63. Additionally, a missense mutation was found in the CCDC63 gene and the haplotype was different between the high reproduction (HR) group and low reproduction (LR) group in HS. In summary, we discovered genetic differentiation among six distinct breeding sheep breeds at the whole genome level. Additionally, we identified a set of genes which were associated with reproductive performance in Hu sheep and visualized how these genes differed in different breeds. These findings laid a theoretical foundation for understanding genetic mechanisms behind high prolific traits in sheep.


Asunto(s)
Tamaño de la Camada , Secuenciación Completa del Genoma , Animales , Tamaño de la Camada/genética , Ovinos/genética , Selección Genética , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Cruzamiento , Femenino , Fertilidad/genética , Reproducción/genética
4.
J Hepatol ; 81(2): 345-359, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38552880

RESUMEN

The rising prevalence of liver diseases related to obesity and excessive use of alcohol is fuelling an increasing demand for accurate biomarkers aimed at community screening, diagnosis of steatohepatitis and significant fibrosis, monitoring, prognostication and prediction of treatment efficacy. Breakthroughs in omics methodologies and the power of bioinformatics have created an excellent opportunity to apply technological advances to clinical needs, for instance in the development of precision biomarkers for personalised medicine. Via omics technologies, biological processes from the genes to circulating protein, as well as the microbiome - including bacteria, viruses and fungi, can be investigated on an axis. However, there are important barriers to omics-based biomarker discovery and validation, including the use of semi-quantitative measurements from untargeted platforms, which may exhibit high analytical, inter- and intra-individual variance. Standardising methods and the need to validate them across diverse populations presents a challenge, partly due to disease complexity and the dynamic nature of biomarker expression at different disease stages. Lack of validity causes lost opportunities when studies fail to provide the knowledge needed for regulatory approvals, all of which contributes to a delayed translation of these discoveries into clinical practice. While no omics-based biomarkers have matured to clinical implementation, the extent of data generated has enabled the hypothesis-free discovery of a plethora of candidate biomarkers that warrant further validation. To explore the many opportunities of omics technologies, hepatologists need detailed knowledge of commonalities and differences between the various omics layers, and both the barriers to and advantages of these approaches.


Asunto(s)
Biomarcadores , Humanos , Biomarcadores/análisis , Biomarcadores/metabolismo , Hígado Graso/diagnóstico , Hígado Graso/genética , Proteómica/métodos , Metabolómica/métodos , Genómica/métodos
5.
Biochem Biophys Res Commun ; 727: 150326, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38968768

RESUMEN

The Cyclic GMP-AMP synthase (cGAS) and cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzymes belong to the key components of the innate immune sensor system that generates cyclic dinucleotide molecules in response to danger signals. Recently, it was discovered that CD-NTase in bacteria can undergo conjugation to protein substrates via an E1/E2 enzyme-mediated process, resembling ubiquitin modification system. Subsequently, these CD-NTase conjugated molecules will be hydrolyzed by the Cap3 enzyme in the same gene cluster. However, the experimental structure of bacterial CD-NTase recognized by Cap3 is unknown. Here, we first determined the crystal structure of the Cap3 enzyme in complex with the C-terminal tail of CD-NTase. Our structural and enzymatic analysis revealed that the C-terminal tail of CD-NTase is both necessary and sufficient for the Cap3-mediated hydrolysis of CD-NTase from its substrates. Interestingly, we further observed that after the hydrolysis reaction, the terminal glycine residue of the CD-NTase C-terminal tail was sequentially removed by Cap3, indicating that Cap3 might play a role in quenching the CD-NTase conjugation reaction. Our work provides experimental evidence elucidating the interaction between Cap3 and CD-NTase, and suggests a potential role for Cap3 in the bacterial Cyclic-oligonucleotide-based anti-phage signaling system (CBASS).


Asunto(s)
Nucleotidiltransferasas , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/química , Nucleotidiltransferasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Hidrólisis
6.
J Nanobiotechnology ; 22(1): 241, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735933

RESUMEN

BACKGROUND: Colorectal cancer (CRC) incidence is increasing in recent years due to intestinal flora imbalance, making oral probiotics a hotspot for research. However, numerous studies related to intestinal flora regulation ignore its internal mechanisms without in-depth research. RESULTS: Here, we developed a probiotic microgel delivery system (L.r@(SA-CS)2) through the layer-by-layer encapsulation technology of alginate (SA) and chitosan (CS) to improve gut microbiota dysbiosis and enhance anti-tumor therapeutic effect. Short chain fatty acids (SCFAs) produced by L.r have direct anti-tumor effects. Additionally, it reduces harmful bacteria such as Proteobacteria and Fusobacteriota, and through bacteria mutualophy increases beneficial bacteria such as Bacteroidota and Firmicutes which produce butyric acid. By binding to the G protein-coupled receptor 109A (GPR109A) on the surface of colonic epithelial cells, butyric acid can induce apoptosis in abnormal cells. Due to the low expression of GPR109A in colon cancer cells, MK-6892 (MK) can be used to stimulate GPR109A. With increased production of butyrate, activated GPR109A is able to bind more butyrate, which further promotes apoptosis of cancer cells and triggers an antitumor response. CONCLUSION: It appears that the oral administration of L.r@(SA-CS)2 microgels may provide a treatment option for CRC by modifying the gut microbiota.


Asunto(s)
Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Limosilactobacillus reuteri , Probióticos , Microbioma Gastrointestinal/efectos de los fármacos , Probióticos/farmacología , Humanos , Ácidos Grasos Volátiles/metabolismo , Animales , Limosilactobacillus reuteri/metabolismo , Ratones , Quitosano/química , Alginatos/química , Alginatos/farmacología , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Administración Oral , Neoplasias Colorrectales/tratamiento farmacológico , Línea Celular Tumoral , Receptores Acoplados a Proteínas G/metabolismo , Microgeles/química , Ratones Endogámicos BALB C , Ácido Butírico/farmacología , Ácido Butírico/metabolismo
7.
Cell Mol Biol Lett ; 29(1): 59, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654156

RESUMEN

Skeletal muscle is the largest metabolic organ of the human body. Maintaining the best quality control and functional integrity of mitochondria is essential for the health of skeletal muscle. However, mitochondrial dysfunction characterized by mitochondrial dynamic imbalance and mitophagy disruption can lead to varying degrees of muscle atrophy, but the underlying mechanism of action is still unclear. Although mitochondrial dynamics and mitophagy are two different mitochondrial quality control mechanisms, a large amount of evidence has indicated that they are interrelated and mutually regulated. The former maintains the balance of the mitochondrial network, eliminates damaged or aged mitochondria, and enables cells to survive normally. The latter degrades damaged or aged mitochondria through the lysosomal pathway, ensuring cellular functional health and metabolic homeostasis. Skeletal muscle atrophy is considered an urgent global health issue. Understanding and gaining knowledge about muscle atrophy caused by mitochondrial dysfunction, particularly focusing on mitochondrial dynamics and mitochondrial autophagy, can greatly contribute to the prevention and treatment of muscle atrophy. In this review, we critically summarize the recent research progress on mitochondrial dynamics and mitophagy in skeletal muscle atrophy, and expound on the intrinsic molecular mechanism of skeletal muscle atrophy caused by mitochondrial dynamics and mitophagy. Importantly, we emphasize the potential of targeting mitochondrial dynamics and mitophagy as therapeutic strategies for the prevention and treatment of muscle atrophy, including pharmacological treatment and exercise therapy, and summarize effective methods for the treatment of skeletal muscle atrophy.


Asunto(s)
Dinámicas Mitocondriales , Mitofagia , Músculo Esquelético , Atrofia Muscular , Humanos , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/terapia , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Animales , Mitocondrias/metabolismo , Mitocondrias/patología
8.
Mol Cell Proteomics ; 21(3): 100207, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35093608

RESUMEN

Obesity leads to the development of nonalcoholic fatty liver disease (NAFLD) and associated alterations to the plasma proteome. To elucidate the underlying changes associated with obesity, we performed liquid chromatography-tandem mass spectrometry in the liver and plasma of obese leptin-deficient ob/ob mice and integrated these data with publicly available transcriptomic and proteomic datasets of obesity and metabolic diseases in preclinical and clinical cohorts. We quantified 7173 and 555 proteins in the liver and plasma proteomes, respectively. The abundance of proteins related to fatty acid metabolism were increased, alongside peroxisomal proliferation in ob/ob liver. Putatively secreted proteins and the secretory machinery were also dysregulated in the liver, which was mirrored by a substantial alteration of the plasma proteome. Greater than 50% of the plasma proteins were differentially regulated, including NAFLD biomarkers, lipoproteins, the 20S proteasome, and the complement and coagulation cascades of the immune system. Integration of the liver and plasma proteomes identified proteins that were concomitantly regulated in the liver and plasma in obesity, suggesting that the systemic abundance of these plasma proteins is regulated by secretion from the liver. Many of these proteins are systemically regulated during type 2 diabetes and/or NAFLD in humans, indicating the clinical importance of liver-plasma cross talk and the relevance of our investigations in ob/ob mice. Together, these analyses yield a comprehensive insight into obesity and provide an extensive resource for obesity research in a prevailing model organism.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Animales , Diabetes Mellitus Tipo 2/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteómica
9.
Nucleic Acids Res ; 50(18): 10562-10570, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36156138

RESUMEN

In this study, a hydrazone chemistry-mediated clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 12a (Cas12a) system has been proposed for the fist time and constructed. In our system, hydrazone chemistry is designed and employed to accelerate the formation of a whole activation strand by taking advantage of the proximity effect induced by complementary base pairing, thus activating the CRISPR/Cas12a system quickly and efficiently. Moreover, the introduction of hydrazone chemistry can improve the specificity of the CRISPR/Cas12a system, allowing it to effectively distinguish single-base mismatches. The established system has been further applied to analyze Pseudomonas aeruginosa by specific recognition of the probe strand with a characteristic fragment in 16S rDNA to release the hydrazine group-modified activation strand. The method shows a wide linear range from 3.8 × 102 colony-forming units (CFU)/ml to 3.8 × 106 CFU/ml, with the lowest detection limit of 24 CFU/ml. Therefore, the introduction of hydrazone chemistry may also broaden the application of the CRISPR/Cas12a system.


Asunto(s)
Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Proteínas Asociadas a CRISPR/genética , ADN Ribosómico , Edición Génica/métodos , Hidrazonas/farmacología
10.
Curr Issues Mol Biol ; 45(3): 2073-2089, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36975503

RESUMEN

The sirtuin family, a group of NAD+-dependent class 3 histone deacetylases (HDACs), was extensively studied initially as a group of longevity genes that are activated in caloric restriction and act in concert with nicotinamide adenine dinucleotides to extend the lifespan. Subsequent studies have found that sirtuins are involved in various physiological processes, including cell proliferation, apoptosis, cell cycle progression, and insulin signaling, and they have been extensively studied as cancer genes. In recent years, it has been found that caloric restriction increases ovarian reserves, suggesting that sirtuins may play a regulatory role in reproductive capacity, and interest in the sirtuin family has continued to increase. The purpose of this paper is to summarize the existing studies and analyze the role and mechanism of SIRT1, a member of the sirtuin family, in regulating ovarian function. Research and review on the positive regulation of SIRT1 in ovarian function and its therapeutic effect on PCOS syndrome.

11.
Mol Syst Biol ; 18(5): e10947, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35579278

RESUMEN

Deeper understanding of liver pathophysiology would benefit from a comprehensive quantitative proteome resource at cell type resolution to predict outcome and design therapy. Here, we quantify more than 150,000 sequence-unique peptides aggregated into 10,000 proteins across total liver, the major liver cell types, time course of primary cell cultures, and liver disease states. Bioinformatic analysis reveals that half of hepatocyte protein mass is comprised of enzymes and 23% of mitochondrial proteins, twice the proportion of other liver cell types. Using primary cell cultures, we capture dynamic proteome remodeling from tissue states to cell line states, providing useful information for biological or pharmaceutical research. Our extensive data serve as spectral library to characterize a human cohort of non-alcoholic steatohepatitis and cirrhosis. Dramatic proteome changes in liver tissue include signatures of hepatic stellate cell activation resembling liver cirrhosis and providing functional insights. We built a web-based dashboard application for the interactive exploration of our resource (www.liverproteome.org).


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Proteoma , Humanos , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteoma/metabolismo , Proteómica
12.
BMC Microbiol ; 23(1): 249, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37674107

RESUMEN

Captive pandas are suffering from intestinal infection due to intestinal microbiota characterized by a high abundance of Enterobacteriaceae induced by long-term captivity. Probiotic supplements showed improvement in intestinal barrier function and inflammation. However, the effects of panda-derived probiotics on the intestinal epithelium and inflammation have not been elucidated. In the present study, lipopolysaccharide (LPS) impaired Caco-2 and RAW264.7 inflammatory models were applied to assess the protection of Lactiplantibacillus plantarum BSG201683 (L. plantarum G83) on barrier disruption and inflammation. The results showed that treatment with L. plantarum G83 significantly decreased the paracellular permeability to fluorescein isothiocyanate conjugated dextran (MW 4000, FITC-D4) after LPS induction. Meanwhile, L. plantarum G83 alleviated the reduction in tight junction (TJ) proteins and downregulated proinflammatory cytokines caused by LPS in Caco-2 cells. L. plantarum G83 also significantly decreased the expression and secretion of pro-inflammatory cytokines in LPS-induced RAW264.7 cells. In addition, the IL-10 increased in both Caco-2 and RAW264.7 cells after L. plantarum G83 treatment. The phagocytosis activity of RAW264.7 cells was significantly increased after L. plantarum G83 treatment. Toll-like receptor 4/ nuclear factor kappa-B (TLR4/NF-κB) signaling pathways were significantly down-regulated after L. plantarum G83 intervention, and the phosphorylation of NF-κB/p65 was consistent with this result. Our findings suggest that L. plantarum G83 improves intestinal inflammation and epithelial barrier disruption in vitro.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Humanos , Células CACO-2 , Citocinas , Inflamación/inducido químicamente
13.
Pediatr Res ; 94(2): 683-690, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36759750

RESUMEN

BACKGROUND: Sengers syndrome characterized by hypertrophic cardiomyopathy is an extremely rare genetic disorder. Sengers syndrome associated with left ventricular non-compaction (LVNC) has not been described. METHODS: Genetic testing was used to identify candidate AGK variants in the proband. The predicted molecular structures were constructed by protein modeling. Exon skipping caused by the identified splicing mutations was verified by in silico analyses and in vitro assays. The genotypic and phenotypic features of patients with AGK splicing mutations were extracted by a systematic review. RESULTS: The proband was characterized by Sengers syndrome and LVNC and caused by a novel compound heterozygous AGK splicing mutation. This compound mutation simultaneously perturbed the protein sequences and spatial conformation of the acylglycerol kinase protein. In silico and in vitro analyses demonstrated skipping of exons 7 and 8 and premature truncation as a result of exon 8 skipping. The systematic review indicated that patients with an AGK splicing mutation may have milder phenotypes of Sengers syndrome. CONCLUSIONS: The genotypic and phenotypic spectrums of Sengers syndrome have been expanded, which will provide essential information for genetic counseling. The molecular mechanism in AGK mutations can offer insights into the potential targets for treatment. IMPACT: First description of a child with Sengers syndrome and left ventricular non-compaction cardiomyopathy. A novel pathogenic compound heterozygous splicing mutation in AGK for Sengers syndrome was identified. The identified mutations led to exons skipping by in silico analyses and in vitro assays.


Asunto(s)
Cardiomiopatías , Catarata , Humanos , Cardiomiopatías/genética , Pruebas Genéticas , Mutación , Catarata/genética , Catarata/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
14.
J Nanobiotechnology ; 21(1): 83, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894941

RESUMEN

In this study, exosomes from cooked meat were extracted by ultra-high-speed centrifugation. Approximately 80% of exosome vesicles were within 20-200 nm. In addition, the surface biomarkers of isolated exosomes were evaluated using flow cytometry. Further studies showed the exosomal microRNA profiles were different among cooked porcine muscle, fat and liver. Cooked pork-derived exosomes were chronically administered to ICR mice by drinking for 80 days. The mice plasma levels of miR-1, miR-133a-3p, miR-206 and miR-99a were increased to varying degrees after drinking exosome enriched water. Furthermore, GTT and ITT results confirmed an abnormal glucose metabolism and insulin resistance in mice. Moreover, the lipid droplets were significantly increased in the mice liver. A transcriptome analysis performed with mice liver samples identified 446 differentially expressed genes (DEGs). Functional enrichment analysis found that DEGs were enriched in metabolic pathways. Overall, the results suggest that microRNAs derived form cooked pork may function as a critical regulator of metabolic disorder in mice.


Asunto(s)
Exosomas , MicroARNs , Carne de Cerdo , Carne Roja , Ratones , Animales , Porcinos , MicroARNs/metabolismo , Exosomas/metabolismo , Ratones Endogámicos ICR
15.
J Nanobiotechnology ; 21(1): 356, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777744

RESUMEN

Currently, there is an increasing amount of evidence indicating that exosomes and the miRNAs they contain are crucial players in various biological processes. However, the role of exosomes and miRNAs in snake venom during the envenomation process remains largely unknown. In this study, fresh venom from Naja atra of different ages (2-month-old, 1-year-old, and 5-year-old) was collected, and exosomes were isolated through ultracentrifugation. The study found that exosomes with inactivated proteins and enzymes can still cause symptoms similar to cobra envenomation, indicating that substances other than proteins and enzymes in exosomes may also play an essential role in cobra envenomation. Furthermore, the expression profiles of isolated exosome miRNAs were analyzed. The study showed that a large number of miRNAs were co-expressed and abundant in cobra venom exosomes (CV-exosomes) of different ages, including miR-2904, which had high expression abundance and specific sequences. The specific miR-2094 derived from CV-exosomes (CV-exo-miR-2904) was overexpressed both in vitro and in vivo. As a result, CV-exo-miR-2904 induced symptoms similar to cobra envenomation in mice and caused liver damage, demonstrating that it plays a crucial role in cobra envenomation. These results reveal that CV-exosomes and the miRNAs they contain play a significant regulatory role in cobra envenomation. Our findings provide new insights for the treatment of cobra bites and the development of snake venom-based medicines.


Asunto(s)
Exosomas , MicroARNs , Animales , Ratones , Venenos Elapídicos/genética , Venenos Elapídicos/metabolismo , Elapidae/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Exosomas/genética , Exosomas/metabolismo , Venenos de Serpiente/metabolismo
16.
Anim Biotechnol ; 34(9): 4713-4720, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36927230

RESUMEN

The estrogen receptor (ESR) gene and follicle-stimulating hormone ß (FSHß) gene are responsible for litter traits. The present study aimed to verify the polymorphisms of ESR and FSHß and assess their effects on the litter traits in 201 Large White pigs. Four SNPs (g.C669T, g.A1296G, g.C1665T and g.A1755G) were found in ESR. The TT genotype at g.C1665T locus and AA genotype at g.A1755G locus could significantly increase the total litter size of the first litter of American Large White pigs (p < 0.05). Eight SNPs were found in exon 3 of FSHß. The AA genotype at g.A511G locus, AA and AG genotypes at g.A617G locus, CC and CT genotypes at g.C630T locus, CT and TT genotypes at g.C652T locus, CT and TT genotypes at g.C735T locus, AA and AG genotypes at g.A746G, AA and AG genotypes at g.A921G and CT genotype at g.C678T could significantly increase the litter size of different strains of Large White pigs (p < 0.05). Our study revealed that the genetic variations of ESR and FSHß were closely related to the litter trait of Large White pigs. Therefore, ESR and FSHß genes could be used as molecular markers for the genetic selection of Large White pigs.


Asunto(s)
Hormona Folículo Estimulante de Subunidad beta , Polimorfismo de Nucleótido Simple , Embarazo , Femenino , Porcinos/genética , Animales , Hormona Folículo Estimulante de Subunidad beta/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Genotipo , Tamaño de la Camada/genética
17.
Ecotoxicol Environ Saf ; 251: 114540, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36640570

RESUMEN

Pesticides could induce long-term impacts on aquatic ecosystem via transgenerational toxicity. However, for many chiral pesticides, the potential enantioselectivity of transgenerational toxicity has yet to be fully understood. In this study, we used zebrafish as models to evaluate the maternal transfer risk of tebuconazole (TEB), which is a chiral triazole fungicide currently used worldwide and has been frequently detected in surface waters. After 28-day food exposure (20 and 400 ng/g) to the two enantiomers of TEB (S- and R-TEB) in adult female zebrafish (F0), increased malformation rate and decreased swimming speed were found in F1 larvae, with R-TEB showing higher impacts than S-enantiomer. Additionally, enantioselective effects on the secretion of thyroid hormones (THs) and expression of TH-related key genes along the hypothalamic-pituitary-thyroid (HPT) axis were found in both F0 and F1 after maternal exposure. Both the two enantiomers significantly disrupted the triiodothyronine (T3) and thyroxine (T4) contents in F0 with different degrees, whereas in F1, significant effects were only found in R-TEB groups with decreasing of both T3 and T4 contents. Most of the HPT axis related genes in F0 were upregulated by TEB and more sensitive to R-TEB than to S-TEB. In contrast, most of the genes in F1 were downregulated by both R- and S-TEB, especially the genes that are primarily responsible for thyroid development and growth (Nkx2-1), TH synthesis (NIS and TSHꞵ) and metabolism (Deio1). Findings from this study highlight the key role of enantioselectivity in the ecological risk assessment of chiral pesticides through maternal transfer.


Asunto(s)
Disruptores Endocrinos , Fungicidas Industriales , Plaguicidas , Contaminantes Químicos del Agua , Animales , Humanos , Femenino , Glándula Tiroides , Pez Cebra/genética , Pez Cebra/metabolismo , Fungicidas Industriales/metabolismo , Exposición Materna/efectos adversos , Ecosistema , Estereoisomerismo , Contaminantes Químicos del Agua/metabolismo , Disruptores Endocrinos/metabolismo , Triazoles/metabolismo , Plaguicidas/toxicidad , Larva/metabolismo
18.
Ecotoxicol Environ Saf ; 265: 115501, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37774545

RESUMEN

The contamination of uranium in aquatic ecosystems has raised growing global concern. However, the understanding of its chronic effects on aquatic organisms is limited, particularly with regards to transgenerational toxicity. In this study, we evaluated the maternal transfer risk of uranium using zebrafish. Sexually mature female zebrafish were exposed to 2 and 20 ng/g of uranium-spiked food for 28 days. The induced bioconcentration, thyroid disruption, and oxidative stress in both the adults (F0) and their embryos (F1) were further investigated. Element analysis showed that uranium was present in both F0 and F1, with higher concentrations observed in F1, indicating significant maternal offloading to the offspring. Meanwhile, an increased malformation and decreased swim speed were observed in the F1. Thyroid hormone analysis revealed significant decreases in the levels of triiodothyronine (T3) in both the F0 adults and F1 embryos, but thyroxine (T4) was not significantly affected. Additionally, the activities of antioxidant defenses, including catalase (CAT) and superoxide dismutase (SOD), and the expression of glutathione (GSH) and malondialdehyde (MDA) were significantly altered in the F0 and F1 larvae at 120 hpf. The hypothalamic-pituitary-thyroid (HPT) axis, oxidative stress, and apoptosis-related gene transcription expression were also significantly affected in both generations. Taken together, these findings highlight the importance of considering maternal transfer in uranium risk assessments.


Asunto(s)
Disruptores Endocrinos , Uranio , Contaminantes Químicos del Agua , Animales , Humanos , Femenino , Glándula Tiroides , Pez Cebra/metabolismo , Uranio/toxicidad , Uranio/metabolismo , Exposición Materna/efectos adversos , Ecosistema , Contaminantes Químicos del Agua/metabolismo , Disruptores Endocrinos/toxicidad , Estrés Oxidativo , Larva
19.
Plant Dis ; 107(8): 2307-2312, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36548918

RESUMEN

The planting of passion fruit (Passiflora edulis) in Guizhou Province has gradually increased, and the area under cultivation ranks third in China. However, the cultivation and production of passion fruit is severely affected by viral diseases. In 2021 and 2022, we investigated the occurrence of multiple viral diseases in major cultivation areas, identified the main viruses and conducted field surveys in different growing areas of passion fruit in Guizhou Province, China. In total, 308 samples were randomly collected from 10 different passion fruit cultivation areas, and seven viral diseases were identified using electron microscopy, small RNA sequencing, and reverse-transcription polymerase chain reaction. Among them, the infection rate of Telosma mosaic virus (TeMV) was the highest (50%), followed by East Asian Passiflora virus (EAPV) (19%), and cucumber mosaic virus (CMV) (15%). The detection rates of the other four viruses were lower: Passiflora latent virus (PLV) (1%), turnip mosaic virus (TuMV) (0.6%), Passiflora virus Y (PaVY) (0.3%), and Euphorbia leaf curl virus (ELCV) (6%). In addition, high rates of mixed TeMV + CMV + EAPV infections were found in the province. Notably, 79% of EAPV-infected plants were also infected with TeMV. Finally, the molecular characteristics of the two highly detected potyviruses, TeMV and EAPV, were analyzed. To our knowledge, this study is the first systematic survey of viral diseases of passion fruit in Guizhou Province, China.


Asunto(s)
Infecciones por Citomegalovirus , Passiflora , Potyvirus , Virus , Frutas , Potyvirus/genética
20.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37511183

RESUMEN

Diarrhea is associated with gut microbiota, immunity, and metabolic alterations in goat kids and lambs. This study used 28 lambs (11 healthy and 17 diarrheic) and 20 goat kids (10 healthy and 10 diarrheic) to investigate the association between diarrhea occurrence and changes in gut microbiota, metabolism, and immunity in goat kids and lambs. The results revealed that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla in goat kids and lambs. In addition, Enterobacteriaceae and Lachnospiraceae families were identified in both diarrheic goat kids and lambs. Furthermore, functional prediction of microbiota showed that it was involved in cell motility and cancer pathways. The identified differential metabolites were implicated in the bile secretion pathway. Lambs had significant differences in immunoglobulin G (IgG), immunoglobulin M (IgM), interleukin-1ß (IL-1ß), and tumor necrosis factor-alpha (TNF-α) compared to goat kids. IgG and IL-1ß were positively correlated to Patescibacteria, Clostridiaceae, and unclassified_Muribaculaceae in both diarrheic goat kids and lambs. In addition, weighted gene co-expression network analysis (WGCNA) revealed that the MEgreen module was positively associated with IgG, IgM, IL-1ß, TNF-α, and triglyceride (TG). In conclusion, our results characterized the gut microbiota, metabolism, and immune status of lambs and goat kids suffering from diarrhea.


Asunto(s)
Microbioma Gastrointestinal , Ovinos , Animales , ARN Ribosómico 16S/genética , Factor de Necrosis Tumoral alfa , Diarrea/microbiología , Cabras , Metabolómica , Inmunoglobulina G
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA