Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Dis ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698521

RESUMEN

Fusarium pseudograminearum is an important plant pathogen that invades many crops (Zhang et al. 2018). Since it was first discovered in Australia in 1951, F. pseudograminearum has been reported in many countries and regions and caused huge economic losses (Burgess et al. 2001). In 2012, crown rot of wheat caused by F. pseudograminearum was discovered for the first time in Henan Province, China (Li et al. 2012). Wheat (Triticum aestivum L.) is one of the most important food crops in Xinjiang Uygur Autonomous Region (XUAR), with 1.07 million hectares cultivated in 2020. In June 2023, a survey of crown rot disease was carried out in winter wheat cv. Xindong 20 in Hotan area, XUAR, China (80.148907°E, 37.051474°N). About 5% of wheat plants showed symptoms of crown rot such as browning of the stem base and white head. The disease was observed in 85% of wheat fields. In order to identify the pathogens, 36 pieces of diseased stem basal tissue, 0.5 cm in length, were collected and sterilized with 75% alcohol for 30s and 5% NaOCl solution for 2 min, then rinsed three times with sterile water and placed on potato dextrose agar (PDA) medium at 25°C. A total of 27 isolates with consistent morphological characteristics were obtained using single-spore technique (Leslie and Summerell. 2006), and the isolation rate was 75%. The isolates grew rapidly on PDA, produced large numbers of fluffy white hyphae, and pink pigment accumulated in the medium. The isolates were grown on 2% mung bean flour medium and identified by morphological and molecular methods. Macroconidia were abundant, relatively slender, curved to almost straight, commonly two to seven septate, and averaged 22 to 72 × 1.8 to 4.9 µm. Microconidia were not observed. The morphological characters are consistent with Fusarium (Aoki and O'Donnell. 1999). Two isolates (LP-1 and LP-3) were selected for molecular identification. Primers EF1/EF2 (5'-ATGGGTAAGGARGACAAGAC-3'/5'-GGARGTACCAGTSATCATG-3') were used to amplify a portion of the EF-1α gene (O'Donnell et al. 1998). The two 696 bp PCR products were sequenced and submitted to GenBank. The EF-1α gene sequences (GenBank Accession No: PP062794 and PP062795) shared 99.9% identity (695/696) with published F.pseudograminearum sequences (e.g., OP105187, OP105184, OP105179, OP105173). The identification was further confirmed by F. pseudograminearum species-specific PCR primers Fp1-1/Fp1-2 (Aoki and O'Donnell. 1999). The expected PCR products of 518 bp were produced only in F. pseudograminearum. Pathogenicity tests of LP-1 and LP-3 isolates were performed on 7-day-old seedlings of winter wheat cv. Xindong 20 using the drip inoculation method with a 10-µl of a 106 macroconidia ml-1 suspension near the stem base (Xu et al. 2017). The experiment was repeated five times in a 20 to 25°C greenhouse. Control seedlings were treated with sterile water. After 4 weeks, wheat seedling death and crown browning occurred in the inoculated plants with over 90% incidence. No symptoms were observed in the control plants. The pathogen was reisolated from the inoculated plants by the method described above and identified by morphological and PCR amplification using F. pseudograminearum species-specific primers Fp1-1/Fp1-2. No F. pseudograminearum was isolated from the control plants, fulfilling Koch's postulates. To our knowledge, this is the first report of F. pseudograminearum causing crown rot of winter wheat in XUAR of China. Since F. pseudograminearum can cause great damage to wheat, one of the most important food crops in China, necessary measures should be taken to prevent the spread of F. pseudograminearum to other regions.

2.
Plant Dis ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017583

RESUMEN

Wheat (Triticum aestivum L.) is the predominant grain crop and plays a pivotal role in grain production in Xinjiang Uygur Autonomous Region (XUAR), China. Its cultivated area constitutes approximately half of the total sown area of grain crops in XUAR, with 1.14 million hectares in 2021. Fusarium crown rot (FCR) of wheat, caused by Fusarium culmorum (W.G. Smith) Sacc., is one of the most devastating soil-borne diseases known to seriously reduce grain yield (Ma et al. 2024; Saad et al. 2023). In 2016, FCR of wheat, caused by F. culmorum, was firstly identified in Henan Province, China (Li et al. 2016). In June 2023, during the investigation of FCR of wheat in Aksu Prefecture, XUAR, FCR on winter wheat (cv. Xindong 20) was found (82.761349°E, 41.612202°N). The grain-filling period for winter wheat in early June coincided with a period of high temperatures and water demand in Aksu Prefecture. Approximately 8% of the Xindong 20 wheat plants exhibited symptoms of white heads and browning at the stem base, with the disease present in 82% of the wheat fields surveyed. To identify the pathogens, 20 samples of diseased stem basal tissue, each 0.5 cm in length, were collected and sterilized with 75% alcohol for 30s and 5% NaOCl solution for 2 min, followed by three rinses with sterile water. These samples were then plated onto potato dextrose agar (PDA) medium at 25°C for 5 days. A total of 17 isolates with consistent morphological characteristics were obtained using single-spore technique, with an isolation rate of 85%. The isolated strains exhibited rapid growth on PDA, producing fluffy, pale-yellow hyphae, and accumulating a pale-yellow to dark red pigment on the bottom of the medium. On carnation leaf agar (CLA), these strains formed orange colonies due to the aggregation of a large number of macroconidia. The macroconidia were short and thick, with three to four septa and rounded apical cell, averaging 31.94 to 40.96 × 5.62 to 6.71 µm (Magnification of ×400). Microconidia were not observed. These morphological characters were consistent with those of F. culmorum (Leslie and Summerell. 2006). Two isolates (D-9 and D-11) were selected for molecular identification. The EF-1α gene fragment was amplified using primers EF1/EF2 (5'-ATGGGTAAGGARGACAAGAC-3'/5'-GGARGTACCAGTSATCATG-3') as previously described by O'Donnell et al. (1998). The two 665 bp PCR products were sequenced and submitted to GenBank (GenBank Accession No: PP763247 and PP763248) with 99. 7% identity to the published F. culmorum sequences (e.g., OP985478, OP985477, MG195126, KX702638). The molecular identification was further confirmed by F. culmorum species-specific PCR primers FcOIF/FcOIR (Nicholson et al. 1998). The expected PCR products of 553 bp were produced only in F. culmorum. Strains D-9 and D-11 were used to conduct the pathogenicity experiment on 7-day-old winter wheat (cv. Xindong 20) using drip in the lower stem inoculation method with a 10-µl of 106 macroconidia ml-1 suspension, and the control 7-day-old winter wheat were treated with sterile water (Xu et al. 2017). The experiments were replicated five times in a greenhouse at temperatures ranging from 20℃ to 25℃. After 4 weeks, all inoculated wheat seedlings showed stem base browning or even death. No symptoms were observed on the control plants. The fungus was reisolated from all inoculated wheat plants by the method described above and identified by morphological and PCR amplification using F. culmorum species-specific primers FcOIF/FcOIR. No F. culmorum was isolated from the control wheat plants, fulfilling Koch's postulates. To the best of our knowledge, this is the first report of F.culmorum causing FCR on winter wheat in XUAR, China. Considering wheat is the predominant grain crop and plays a pivotal role in grain production in China, necessary measures should be taken to prevent the spread of F. culmorum to other regions.

3.
Plant Dis ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36825319

RESUMEN

Corn (Zea mays L.) plays an important role in China's cash crops, not only as food, but a vital raw material for animal husbandry and industry (Li et al. 2022). Pratylenchus zeae is one of the most damaging root-lesion nematodes (RLN) that can result in decreased yield and quality of crops (Liu et al. 2017). In September 2020, five root/soil samples were collected from the rhizosphere of corn (cv. Zhengdan 958), which had weak growth and root brown lesions in Chenzhou Village, Taolin Town, Donghai County, Lianyungang City, Jiangsu Province of China. Nematodes were extracted from the collected samples using the modified Baermann funnel method (Hooper et al. 2005). RLN were found in all samples, an average of 46 RLN per gram of root and 138 RLN per 100 cm3 of soil. The obtained RLN females were sterilized with 0.3% streptomycin sulfate and then inoculated on each carrot disks individually to obtain the purified population. RLN were examined by morphological and molecular characteristics to confirm the species indentification. The main morphological measurements of adult (n = 15) included body length = 524.7 µm (mean) ± 15.1 (standard deviation) (range = 490.7 to 543.6 µm), stylet = 15.2 µm ± 0.8 (14.2 to 16.8 µm), tail length = 30.3 µm ± 2.5 (26.3 to 35.3 µm), a = 25.6 ± 1.3 (24.4 to 29.3), b = 5.3 ± 0.3 (4.7 to 5.8), c = 17.4 ± 1.4 (14.9 to 19.3), two annules on the lip region. No males were found in the specimens. The morphological characters of this population are consistent with the description of P. zeae (Castillo and Vovlas, 2007). Furthermore, DNA was extracted from individual nematodes. The primers of TW81/AB28 and D2A/D3B (Subbotin et al. 2006) were used to amplified the rDNA-ITS region and rDNA 28S D2-D3 region, respectively. The purified PCR products were ligated into One step ZTOPO-Blunt/TA vector and transformed to Escherichia coli strain DH5α, and then sequenced by Sunya Biotechnology Co., Ltd (Henan, China). The obtained seqences were submitted to NCBI. The rDNA-ITS sequences (669 bp, GenBank Accession No: OP456372 and OP466367) exhibited 95.0% to 97.1% of identity with P. zeae sequences (KU198980 and KU198975). The obtained D2-D3 region of the 28S rDNA sequences (782 bp, OP441397 and OP448675) exhibited 99.7% to 100% identity with P. zeae sequences (EU130893 and KY424269). Consequently, both morphological and molecular data confirmed the identity of P. zeae. To further confirm reproduction on corn, single corn seeds (cv. Zhengdan 958) were sown in eight 2-liter pots filled with 1.8-liter of sterilized soil in greenhouse at 28°C. About 15 days after sowing, each pot with one corn plant with the same growth status was selected to inoculate with 1,000 mixed stage nematodes of P. zeae , Eight pots of uninoculated corn plants were used as controls. After 60 days, the inoculated plants were harvested and brown lesions were observed on roots. No symptoms and nematodes was detected in the control. An average number of RLN per pot was 3,752 in soil and 1,183 in roots were extracted, the reproduction factor (final population/initial population) was 4.94, indicating that P. zeae infects and reproduces well on this corn cultivar. P. zeae has only been reported on corn in Guangxi Province, southern in China(Fang et al. 1994). To our knowledge, this is the fist report of P. zeae infecting corn in Jiangsu Province, eastern in China. As P. zeae can cause great damage to corn, necessary measures should be taken to prevent the spread of P. zeae to other areas.

4.
Sensors (Basel) ; 20(19)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019747

RESUMEN

Unmanned aerial vehicle (UAV) autonomous tracking and landing is playing an increasingly important role in military and civil applications. In particular, machine learning has been successfully introduced to robotics-related tasks. A novel UAV autonomous tracking and landing approach based on a deep reinforcement learning strategy is presented in this paper, with the aim of dealing with the UAV motion control problem in an unpredictable and harsh environment. Instead of building a prior model and inferring the landing actions based on heuristic rules, a model-free method based on a partially observable Markov decision process (POMDP) is proposed. In the POMDP model, the UAV automatically learns the landing maneuver by an end-to-end neural network, which combines the Deep Deterministic Policy Gradients (DDPG) algorithm and heuristic rules. A Modular Open Robots Simulation Engine (MORSE)-based reinforcement learning framework is designed and validated with a continuous UAV tracking and landing task on a randomly moving platform in high sensor noise and intermittent measurements. The simulation results show that when the moving platform is moving in different trajectories, the average landing success rate of the proposed algorithm is about 10% higher than that of the Proportional-Integral-Derivative (PID) method. As an indirect result, a state-of-the-art deep reinforcement learning-based UAV control method is validated, where the UAV can learn the optimal strategy of a continuously autonomous landing and perform properly in a simulation environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA