Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Immunol Cell Biol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924182

RESUMEN

Eosinophils play divergent roles in health and disease, contributing to both immunoregulatory and proinflammatory responses. Helminth infection is strongly associated with eosinophilia and the induction of the type 2 cytokines interleukin (IL)-5, IL-4 and IL-13. This study aimed to elucidate the heterogeneity of pulmonary eosinophils in response to helminth infection and the roles of IL-5, IL-4 and IL-13 in driving pulmonary eosinophil responses. Using the murine helminth model Nippostrongylus brasiliensis (Nb), we characterize a subtype of eosinophils, defined by high expression of CD101, that is induced in the lungs of Nb-infected mice and are phenotypically distinct from lung eosinophils that express low levels of CD101. Strikingly, we show that the two eosinophil subtypes have distinct anatomical localization within the lung: CD101low eosinophils are predominantly localized in the lung vasculature, whereas Nb-induced CD101hi eosinophils are predominantly localized in the extravascular lung niche. We show that CD101hi eosinophils are also induced across other models of pulmonary infection and inflammation, including a nonlung-migrating helminth infection, house dust mite-induced allergic inflammation and influenza infection. Furthermore, we demonstrate that the induction of CD101hi tissue eosinophils is independent of IL-5 and IL-4 signaling, but is dependent on intact IL-13 signaling. These results suggest that IL-13 produced during helminth infection and other disease states promotes a pulmonary tissue-infiltrating program in eosinophils defined by high expression of CD101.

2.
Immunol Cell Biol ; 102(5): 396-406, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38648862

RESUMEN

Increased permeability of the intestinal epithelial layer is linked to the pathogenesis and perpetuation of a wide range of intestinal and extra-intestinal diseases. Infecting humans with controlled doses of helminths, such as human hookworm (termed hookworm therapy), is proposed as a treatment for many of the same diseases. Helminths induce immunoregulatory changes in their host which could decrease epithelial permeability, which is highlighted as a potential mechanism through which helminths treat disease. Despite this, the influence of a chronic helminth infection on epithelial permeability remains unclear. This study uses the chronically infecting intestinal helminth Heligmosomoides polygyrus to reveal alterations in the expression of intestinal tight junction proteins and epithelial permeability during the infection course. In the acute infection phase (1 week postinfection), an increase in intestinal epithelial permeability is observed. Consistent with this finding, jejunal claudin-2 is upregulated and tricellulin is downregulated. By contrast, in the chronic infection phase (6 weeks postinfection), colonic claudin-1 is upregulated and epithelial permeability decreases. Importantly, this study also investigates changes in epithelial permeability in a small human cohort experimentally challenged with the human hookworm, Necator americanus. It demonstrates a trend toward small intestinal permeability increasing in the acute infection phase (8 weeks postinfection), and colonic and whole gut permeability decreasing in the chronic infection phase (24 weeks postinfection), suggesting a conserved epithelial response between humans and mice. In summary, our findings demonstrate dynamic changes in epithelial permeability during a chronic helminth infection and provide another plausible mechanism by which chronic helminth infections could be utilized to treat disease.


Asunto(s)
Mucosa Intestinal , Permeabilidad , Animales , Humanos , Mucosa Intestinal/parasitología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunología , Enfermedad Crónica , Nematospiroides dubius/inmunología , Ratones , Necator americanus , Parasitosis Intestinales/inmunología , Uniones Estrechas/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Intestino Delgado/parasitología , Intestino Delgado/inmunología , Femenino , Ratones Endogámicos C57BL , Masculino , Helmintiasis/inmunología , Helmintiasis/parasitología , Necatoriasis/inmunología , Proteína 2 con Dominio MARVEL/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA