Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Environ Microbiol ; 25(7): 1265-1280, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36826469

RESUMEN

Aquatic bacteria frequently are divided into lifestyle categories oligotroph or copiotroph. Oligotrophs have proportionately fewer transcriptional regulatory genes than copiotrophs and are generally non-motile/chemotactic. We hypothesized that the absence of chemotaxis/motility in oligotrophs prevents them from occupying nutrient patches long enough to benefit from transcriptional regulation. We first confirmed that marine oligotrophs are generally reduced in genes for transcriptional regulation and motility/chemotaxis. Next, using a non-motile oligotroph (Ca. Pelagibacter st. HTCC7211), a motile copiotroph (Alteromonas macleodii st. HOT1A3), and [14 C]l-alanine, we confirmed that l-alanine catabolism is not transcriptionally regulated in HTCC7211 but is in HOT1A3. We then found that HOT1A3 took 2.5-4 min to initiate l-alanine oxidation at patch l-alanine concentrations, compared to <30 s for HTCC7211. By modelling cell trajectories, we predicted that, in most scenarios, non-motile cells spend <2 min in patches, compared to >4 min for chemotactic/motile cells. Thus, the time necessary for transcriptional regulation to initiate prevents transcriptional regulation from being beneficial for non-motile oligotrophs. This is supported by a mechanistic model we developed, which predicted that HTCC7211 cells with transcriptional regulation of l-alanine metabolism would produce 12% of their standing ATP stock upon encountering an l-alanine patch, compared to 880% in HTCC7211 cells without transcriptional regulation.


Asunto(s)
Alphaproteobacteria , Bacterias , Bacterias/genética , Quimiotaxis/genética , Oxidación-Reducción
2.
Environ Microbiol ; 21(7): 2559-2575, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31090982

RESUMEN

Marine bacterioplankton face stiff competition for limited nutrient resources. SAR11, a ubiquitous clade of very small and highly abundant Alphaproteobacteria, are known to devote much of their energy to synthesizing ATP-binding cassette periplasmic proteins that bind substrates. We hypothesized that their small size and relatively large periplasmic space might enable them to outcompete other bacterioplankton for nutrients. Using uptake experiments with 14 C-glycine betaine, we discovered that two strains of SAR11, Candidatus Pelagibacter sp. HTCC7211 and Cand. P. ubique HTCC1062, have extraordinarily high affinity for glycine betaine (GBT), with half-saturation (K s ) values around 1 nM and specific affinity values between 8 and 14 L mg cell-1 h-1 . Competitive inhibition studies indicated that the GBT transporters in these strains are multifunctional, transporting multiple substrates in addition to GBT. Both strains could use most of the transported compounds for metabolism and ATP production. Our findings indicate that Pelagibacter cells are primarily responsible for the high affinity and multifunctional GBT uptake systems observed in seawater. Maximization of whole-cell affinities may enable these organisms to compete effectively for nutrients during periods when the gross transport capacity of the heterotrophic plankton community exceeds the supply, depressing ambient concentrations.


Asunto(s)
Alphaproteobacteria/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Alphaproteobacteria/clasificación , Alphaproteobacteria/genética , Proteínas Bacterianas/genética , Betaína/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Glicina/metabolismo , Plancton/genética , Plancton/metabolismo , Agua de Mar/microbiología
3.
Microb Genom ; 10(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38230915

RESUMEN

In temperate marine climate zones, seasonal changes in water temperature contribute to distinct populations of warm- and cold-water vibrios. We report here the complete genome sequence (BUSCO score=94.8) of the novel strain Vibrio sp. VB16 isolated in late winter from the intertidal zone near Virginia Beach, Virginia, USA with the ability to form colonies at 4 °C. The 5.2 Mbp genome is composed of a large (3.6 Mbp) and small (1.6 Mbp) chromosome. Based on paired average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH), V. sp. VB16 is the same species as V. sp. UBA2437 from a North Sea tidal flat and is closely related to V. sp. DW001 from Antarctic sea ice. Our phylogenomic and bioinformatic analyses placed VB16, UBA2437 and DW001 into a cold-tolerant subclade within the albus clade, along with two non-cold-tolerant subclades. Orthovenn analysis indicated that VB16 and its other albus clade members shared 1544 gene orthologue clusters, including clusters for biosynthesis of polar flagella and tight adhesion pili that predict multiple lifestyles, either free-living or as an opportunistic pathogen within a marine eukaryotic host. The cold-tolerant subclade shared 552 orthologue proteins, including genes known to promote survival in cold or freezing temperatures, such as the eicosapentaenoic acid biosynthetic gene cluster, syp exopolysaccharide gene cluster and novel giant proteins with ice-binding domains. This subclade represents a group of psychrotolerant or 'moderate psychrophile' winter season Vibrio species. The discovery of this subclade opens the door for experimental work on the physiological features, virulence potential and ecological importance of this subclade.


Asunto(s)
Vibrio , Estaciones del Año , Frío , Agua , ADN
4.
Microbiol Mol Biol Rev ; 87(2): e0012422, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-36995249

RESUMEN

In this review, we consider the regulatory strategies of aquatic oligotrophs, microbial cells that are adapted to thrive under low-nutrient concentrations in oceans, lakes, and other aquatic ecosystems. Many reports have concluded that oligotrophs use less transcriptional regulation than copiotrophic cells, which are adapted to high nutrient concentrations and are far more common subjects for laboratory investigations of regulation. It is theorized that oligotrophs have retained alternate mechanisms of regulation, such as riboswitches, that provide shorter response times and smaller amplitude responses and require fewer cellular resources. We examine the accumulated evidence for distinctive regulatory strategies in oligotrophs. We explore differences in the selective pressures copiotrophs and oligotrophs encounter and ask why, although evolutionary history gives copiotrophs and oligotrophs access to the same regulatory mechanisms, they might exhibit distinctly different patterns in how these mechanisms are used. We discuss the implications of these findings for understanding broad patterns in the evolution of microbial regulatory networks and their relationships to environmental niche and life history strategy. We ask whether these observations, which have emerged from a decade of increased investigation of the cell biology of oligotrophs, might be relevant to recent discoveries of many microbial cell lineages in nature that share with oligotrophs the property of reduced genome size.


Asunto(s)
Bacterias , Ecosistema , Humanos , Bacterias/genética , Adaptación Fisiológica , Regulación de la Expresión Génica
5.
Front Microbiol ; 13: 836943, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35591982

RESUMEN

Mt. Erebus, Antarctica, is the world's southernmost active volcano and is unique in its isolation from other major active volcanic systems and its distinctive geothermal systems. Using 16S rRNA gene amplicon sequencing and physicochemical analyses, we compared samples collected at two contrasting high-temperature (50°C-65°C) sites on Mt. Erebus: Tramway Ridge, a weather-protected high biomass site, and Western Crater, an extremely exposed low biomass site. Samples were collected along three thermal gradients, one from Western Crater and two within Tramway Ridge, which allowed an examination of the heterogeneity present at Tramway Ridge. We found distinct soil compositions between the two sites, and to a lesser extent within Tramway Ridge, correlated with disparate microbial communities. Notably, pH, not temperature, showed the strongest correlation with these differences. The abundance profiles of several microbial groups were different between the two sites; class Nitrososphaeria amplicon sequence variants (ASVs) dominated the community profiles at Tramway Ridge, whereas Acidobacteriotal ASVs were only found at Western Crater. A co-occurrence network, paired with physicochemical analyses, allowed for finer scale analysis of parameters correlated with differential abundance profiles, with various parameters (total carbon, total nitrogen, soil moisture, soil conductivity, sulfur, phosphorous, and iron) showing significant correlations. ASVs assigned to Chloroflexi classes Ktedonobacteria and Chloroflexia were detected at both sites. Based on the known metabolic capabilities of previously studied members of these groups, we predict that chemolithotrophy is a common strategy in this system. These analyses highlight the importance of conducting broader-scale metagenomics and cultivation efforts at Mt. Erebus to better understand this unique environment.

6.
mBio ; 12(4): e0109121, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34425701

RESUMEN

In the ocean surface layer and cell culture, the polyamine transport protein PotD of SAR11 bacteria is often one of the most abundant proteins detected. Polyamines are organic cations at seawater pH produced by all living organisms and are thought to be an important component of dissolved organic matter (DOM) produced in planktonic ecosystems. We hypothesized that SAR11 cells uptake and metabolize multiple polyamines and use them as sources of carbon and nitrogen. Metabolic footprinting and fingerprinting were used to measure the uptake of five polyamine compounds (putrescine, cadaverine, agmatine, norspermidine, and spermidine) in two SAR11 strains that represent the majority of SAR11 cells in the surface ocean environment, "Candidatus Pelagibacter" strain HTCC7211 and "Candidatus Pelagibacter ubique" strain HTCC1062. Both strains took up all five polyamines and concentrated them to micromolar or millimolar intracellular concentrations. Both strains could use most of the polyamines to meet their nitrogen requirements, but polyamines did not fully substitute for their requirements of glycine (or related compounds) or pyruvate (or related compounds). Our data suggest that potABCD transports all five polyamines and that spermidine synthase, speE, is reversible, catalyzing the breakdown of spermidine and norspermidine, in addition to its usual biosynthetic role. These findings provide support for the hypothesis that enzyme multifunctionality enables streamlined cells in planktonic ecosystems to increase the range of DOM compounds they metabolize. IMPORTANCE Genome streamlining in SAR11 bacterioplankton has resulted in a small repertoire of genes, yet paradoxically, they consume a substantial fraction of primary production in the oceans. Enzyme multifunctionality, referring to enzymes that are adapted to have broader substrate and catalytic range than canonically defined, is hypothesized to be an adaptation that increases the range of organic compounds metabolized by cells in environments where selection favors genome minimization. We provide experimental support for this hypothesis by demonstrating that SAR11 cells take up and metabolize multiple polyamine compounds and propose that a small set of multifunctional enzymes catalyze this metabolism. We report that polyamine uptake rates can exceed metabolic rates, resulting in both high intracellular concentrations of these nitrogen-rich compounds (in comparison to native polyamine levels) and an increase in cell size.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Enzimas Multifuncionales/metabolismo , Poliaminas/metabolismo , Agua de Mar/microbiología , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Bacterias/clasificación , Carbono/metabolismo , Materia Orgánica Disuelta , Nitrógeno/metabolismo , Poliaminas/clasificación , Agua de Mar/química
7.
Microbiol Resour Announc ; 8(41)2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601663

RESUMEN

We present the draft genome sequence of Janthinobacterium sp. strain PC23-8, a bacterium isolated from freshwater stream sediment downstream from acid mine drainage. The 6.4-Mb genome sequence of this strain contains several secondary metabolite gene clusters, including one similar to the cyclic peptide jagaricin, synthesized by Janthinobacterium agaricidamnosum.

8.
mBio ; 10(2)2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30890605

RESUMEN

In many regions of the world oceans, phytoplankton face the problem of discriminating between phosphate, an essential nutrient, and arsenate, a toxic analogue. Many phytoplankton, including the most abundant phytoplankton group known, Prochlorococcus, detoxify arsenate (AsV) by reduction to arsenite (AsIII), followed by methylation and excretion of the methylated arsenic products. We synthesized [14C]dimethyl arsenate (DMA) and used it to show that cultured Pelagibacter strain HTCC7211 (SAR11) cells oxidize the methyl group carbons of DMA, producing 14CO2 and ATP. We measured [14C]DMA oxidation rates in the P-depleted surface waters of the Sargasso Sea, a subtropical ocean gyre. [14C]DMA was oxidized to 14CO2 by Sargasso Sea plankton communities at a rate that would cause turnover of the estimated DMA standing stock every 8.1 days. SAR11 strain HTCC7211, which was isolated from the Sargasso Sea, has a pair of arsenate resistance genes and was resistant to arsenate, showing no growth inhibition at As/P ratios of >65:1. Across the global oceans, there was a strong inverse relationship between the frequency of the arsenate reductase (LMWPc_ArsC) in Pelagibacter genomes and phosphate concentrations. We propose that the demethylation of methylated arsenic compounds by Pelagibacter and possibly other bacterioplankton, coupled with arsenate resistance, results in the transfer of energy from phytoplankton to bacteria. We dub this a parasitic cycle because the release of arsenate by Pelagibacter in principle creates a positive-feedback loop that forces phytoplankton to continually regenerate arsenate detoxification products, producing a flow of energy to P-limited ocean regions.IMPORTANCE In vast, warm regions of the oceans, phytoplankton face the problem of arsenic poisoning. Arsenate is toxic because it is chemically similar to phosphate, a scarce nutrient that phytoplankton cells need for growth. Many phytoplankton, including the commonest phytoplankton type in warm oceans, Prochlorococcus, detoxify arsenate by adding methyl groups. Here we show that the most abundant non-photosynthetic plankton in the oceans, SAR11 bacteria, remove the methyl groups, releasing poisonous forms of arsenic back into the water. We postulate that the methylation and demethylation of arsenic compounds creates a cycle in which the phytoplankton can never get ahead and must continually transfer energy to the SAR11 bacteria. We dub this a parasitic process and suggest that it might help explain why SAR11 bacteria are so successful, surpassing all other plankton in their numbers. Field experiments were done in the Sargasso Sea, a subtropical ocean gyre that is sometimes called an ocean desert because, throughout much of the year, there is not enough phosphorous in the water to support large blooms of phytoplankton. Ocean deserts are expanding as the oceans absorb heat and grow warmer.


Asunto(s)
Alphaproteobacteria/metabolismo , Arsénico/metabolismo , Metabolismo Energético , Plancton/metabolismo , Prochlorococcus/metabolismo , Agua de Mar/microbiología , Adenosina Trifosfato/metabolismo , Alphaproteobacteria/crecimiento & desarrollo , Dióxido de Carbono/metabolismo , Marcaje Isotópico , Oxidación-Reducción , Prochlorococcus/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA