Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Plant Cell ; 34(7): 2594-2614, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35435236

RESUMEN

The receptor kinase FERONIA (FER) is a versatile regulator of plant growth and development, biotic and abiotic stress responses, and reproduction. To gain new insights into the molecular interplay of these processes and to identify new FER functions, we carried out quantitative transcriptome, proteome, and phosphoproteome profiling of Arabidopsis (Arabidopsis thaliana) wild-type and fer-4 loss-of-function mutant plants. Gene ontology terms for phytohormone signaling, abiotic stress, and biotic stress were significantly enriched among differentially expressed transcripts, differentially abundant proteins, and/or misphosphorylated proteins, in agreement with the known roles for FER in these processes. Analysis of multiomics data and subsequent experimental evidence revealed previously unknown functions for FER in endoplasmic reticulum (ER) body formation and glucosinolate biosynthesis. FER functions through the transcription factor NAI1 to mediate ER body formation. FER also negatively regulates indole glucosinolate biosynthesis, partially through NAI1. Furthermore, we found that a group of abscisic acid (ABA)-induced transcription factors is hypophosphorylated in the fer-4 mutant and demonstrated that FER acts through the transcription factor ABA INSENSITIVE5 (ABI5) to negatively regulate the ABA response during cotyledon greening. Our integrated omics study, therefore, reveals novel functions for FER and provides new insights into the underlying mechanisms of FER function.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Glucosinolatos/metabolismo , Fosfotransferasas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Nat Chem Biol ; 19(11): 1331-1341, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37365405

RESUMEN

Brassinosteroids (BRs) are steroidal phytohormones that are essential for plant growth, development and adaptation to environmental stresses. BRs act in a dose-dependent manner and do not travel over long distances; hence, BR homeostasis maintenance is critical for their function. Biosynthesis of bioactive BRs relies on the cell-to-cell movement of hormone precursors. However, the mechanism of the short-distance BR transport is unknown, and its contribution to the control of endogenous BR levels remains unexplored. Here we demonstrate that plasmodesmata (PD) mediate the passage of BRs between neighboring cells. Intracellular BR content, in turn, is capable of modulating PD permeability to optimize its own mobility, thereby manipulating BR biosynthesis and signaling. Our work uncovers a thus far unknown mode of steroid transport in eukaryotes and exposes an additional layer of BR homeostasis regulation in plants.


Asunto(s)
Proteínas de Arabidopsis , Brasinoesteroides , Plasmodesmos/metabolismo , Reguladores del Crecimiento de las Plantas , Plantas/metabolismo , Hormonas , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo
3.
New Phytol ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923440

RESUMEN

Single-cell proteomics (SCP) is an emerging approach to resolve cellular heterogeneity within complex tissues of multi-cellular organisms. Here, we demonstrate the feasibility of SCP on plant samples using the model plant Arabidopsis thaliana. Specifically, we focused on examining isolated single cells from the cortex and endodermis, which are two adjacent root cell types derived from a common stem cell lineage. From 756 root cells, we identified 3763 proteins and 1118 proteins/cell. Ultimately, we focus on 3217 proteins quantified following stringent filtering. Of these, we identified 596 proteins whose expression is enriched in either the cortex or endodermis and are able to differentiate these closely related plant cell types. Collectivity, this study demonstrates that SCP can resolve neighboring cell types with distinct functions, thereby facilitating the identification of biomarkers and candidate proteins to enable functional genomics.

4.
Plant Cell ; 33(11): 3532-3554, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34436598

RESUMEN

Brassinosteroids (BRs) regulate plant growth, development, and stress responses by activating the core transcription factor BRI1-EMS-SUPPRESSOR1 (BES1), whose degradation occurs through the proteasome and autophagy pathways. The E3 ubiquitin ligase(s) that modify BES1 for autophagy-mediated degradation remain to be fully defined. Here, we identified an F-box family E3 ubiquitin ligase named BES1-ASSOCIATED F-BOX1 (BAF1) in Arabidopsis thaliana. BAF1 interacts with BES1 and mediates its ubiquitination and degradation. Our genetic data demonstrated that BAF1 inhibits BR signaling in a BES1-dependent manner. Moreover, BAF1 targets BES1 for autophagic degradation in a selective manner. BAF1-triggered selective autophagy of BES1 depends on the ubiquitin binding receptor DOMINANT SUPPRESSOR OF KAR2 (DSK2). Sucrose starvation-induced selective autophagy of BES1, but not bulk autophagy, was significantly compromised in baf1 mutant and BAF1-ΔF (BAF1 F-box decoy) overexpression plants, but clearly increased by BAF1 overexpression. The baf1 and BAF1-ΔF overexpression plants had increased BR-regulated growth but were sensitive to long-term sucrose starvation, while BAF1 overexpression plants had decreased BR-regulated growth but were highly tolerant of sucrose starvation. Our results not only established BAF1 as an E3 ubiquitin ligase that targets BES1 for degradation through selective autophagy pathway, but also revealed a mechanism for plants to reduce growth during sucrose starvation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Autofagia , Brasinoesteroides/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Ubiquitina-Proteína Ligasas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
5.
Plant Cell ; 32(2): 295-318, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31776234

RESUMEN

Brassinosteroids (BRs) are a group of polyhydroxylated plant steroid hormones that are crucial for many aspects of a plant's life. BRs were originally characterized for their function in cell elongation, but it is becoming clear that they play major roles in plant growth, development, and responses to several stresses such as extreme temperatures and drought. A BR signaling pathway from cell surface receptors to central transcription factors has been well characterized. Here, we summarize recent progress toward understanding the BR pathway, including BR perception and the molecular mechanisms of BR signaling. Next, we discuss the roles of BRs in development and stress responses. Finally, we show how knowledge of the BR pathway is being applied to manipulate the growth and stress responses of crops. These studies highlight the complex regulation of BR signaling, multiple points of crosstalk between BRs and other hormones or stress responses, and the finely tuned spatiotemporal regulation of BR signaling.


Asunto(s)
Brasinoesteroides/metabolismo , Desarrollo de la Planta/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Estrés Fisiológico/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Productos Agrícolas , Proteínas de Unión al ADN/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
6.
Plant J ; 107(6): 1837-1853, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34216161

RESUMEN

Brassinosteroids (BRs) are a group of plant steroid hormones involved in regulating growth, development, and stress responses. Many components of the BR pathway have previously been identified and characterized. However, BR phenotyping experiments are typically performed in a low-throughput manner, such as on Petri plates. Additionally, the BR pathway affects drought responses, but drought experiments are time consuming and difficult to control. To mitigate these issues and increase throughput, we developed the Robotic Assay for Drought (RoAD) system to perform BR and drought response experiments in soil-grown Arabidopsis plants. RoAD is equipped with a robotic arm, a rover, a bench scale, a precisely controlled watering system, an RGB camera, and a laser profilometer. It performs daily weighing, watering, and imaging tasks and is capable of administering BR response assays by watering plants with Propiconazole (PCZ), a BR biosynthesis inhibitor. We developed image processing algorithms for both plant segmentation and phenotypic trait extraction to accurately measure traits including plant area, plant volume, leaf length, and leaf width. We then applied machine learning algorithms that utilize the extracted phenotypic parameters to identify image-derived traits that can distinguish control, drought-treated, and PCZ-treated plants. We carried out PCZ and drought experiments on a set of BR mutants and Arabidopsis accessions with altered BR responses. Finally, we extended the RoAD assays to perform BR response assays using PCZ in Zea mays (maize) plants. This study establishes an automated and non-invasive robotic imaging system as a tool to accurately measure morphological and growth-related traits of Arabidopsis and maize plants in 3D, providing insights into the BR-mediated control of plant growth and stress responses.


Asunto(s)
Arabidopsis/fisiología , Brasinoesteroides/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Robótica/métodos , Zea mays/fisiología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Sequías , Diseño de Equipo , Aprendizaje Automático , Fenotipo , Proteínas Quinasas/genética , Robótica/instrumentación , Plantones/fisiología , Suelo/química , Triazoles/farmacología
7.
New Phytol ; 236(3): 893-910, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35892179

RESUMEN

Brassinosteroids (BRs) and Target of Rapamycin Complex (TORC) are two major actors coordinating plant growth and stress responses. Brassinosteroids function through a signaling pathway to extensively regulate gene expression and TORC is known to regulate translation and autophagy. Recent studies have revealed connections between these two pathways, but a system-wide view of their interplay is still missing. We quantified the level of 23 975 transcripts, 11 183 proteins, and 27 887 phosphorylation sites in wild-type Arabidopsis thaliana and in mutants with altered levels of either BRASSINOSTEROID INSENSITIVE 2 (BIN2) or REGULATORY ASSOCIATED PROTEIN OF TOR 1B (RAPTOR1B), two key players in BR and TORC signaling, respectively. We found that perturbation of BIN2 or RAPTOR1B levels affects a common set of gene-products involved in growth and stress responses. Furthermore, we used the multi-omic data to reconstruct an integrated signaling network. We screened 41 candidate genes identified from the reconstructed network and found that loss of function mutants of many of these proteins led to an altered BR response and/or modulated autophagy activity. Altogether, these results establish a predictive network that defines different layers of molecular interactions between BR- or TORC-regulated growth and autophagy.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacología , Regulación de la Expresión Génica de las Plantas , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Transducción de Señal/fisiología , Sirolimus , Factores de Transcripción/metabolismo
8.
Plant Cell ; 31(8): 1788-1806, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31126980

RESUMEN

APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) family transcription factors have well-documented functions in stress responses, but their roles in brassinosteroid (BR)-regulated growth and stress responses have not been established. Here, we show that the Arabidopsis (Arabidopsis thaliana) stress-inducible AP2/ERF transcription factor TINY inhibits BR-regulated growth while promoting drought responses. TINY-overexpressing plants have stunted growth, increased sensitivity to BR biosynthesis inhibitors, and compromised BR-responsive gene expression. By contrast, tiny tiny2 tiny3 triple mutants have increased BR-regulated growth and BR-responsive gene expression. TINY positively regulates drought responses by activating drought-responsive genes and promoting abscisic acid-mediated stomatal closure. Global gene expression studies revealed that TINY and BRs have opposite effects on plant growth and stress response genes. TINY interacts with and antagonizes BRASSINOSTERIOID INSENSITIVE1-ETHYL METHANESULFONATE SUPRESSOR1 (BES1) in the regulation of these genes. Glycogen synthase kinase 3-like protein kinase BR-INSENSITIVE2 (BIN2), a negative regulator in the BR pathway, phosphorylates and stabilizes TINY, providing a mechanism for BR-mediated downregulation of TINY to prevent activation of stress responses under optimal growth conditions. Taken together, our results demonstrate that BR signaling negatively regulates TINY through BIN2 phosphorylation and TINY positively regulates drought responses, as well as inhibiting BR-mediated growth through TINY-BES1 antagonistic interactions. Our results thus provide insight into the coordination of BR-regulated growth and drought responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Homeodominio/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Homeodominio/genética , Plantas Modificadas Genéticamente/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
9.
J Exp Bot ; 72(19): 6679-6686, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34018001

RESUMEN

A fundamental question in developmental biology is how the progeny of stem cells become differentiated tissues. The Arabidopsis root is a tractable model to address this question due to its simple organization and defined cell lineages. In particular, the zone of dividing cells at the root tip-the root apical meristem-presents an opportunity to map the gene regulatory networks underlying stem cell niche maintenance, tissue patterning, and cell identity acquisition. To identify molecular regulators of these processes, studies over the last 20 years employed global profiling of gene expression patterns. However, these technologies are prone to information loss due to averaging gene expression signatures over multiple cell types and/or developmental stages. Recently developed high-throughput methods to profile gene expression at single-cell resolution have been successfully applied to plants. Here, we review insights from the first published single-cell mRNA sequencing and chromatin accessibility datasets generated from Arabidopsis roots. These studies successfully reconstruct developmental trajectories, phenotype cell identity mutants at unprecedented resolution, and reveal cell type-specific responses to environmental stimuli. The experimental insight gained from Arabidopsis paves the way to profile roots from additional species.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Meristema/genética , Raíces de Plantas/genética , Análisis de la Célula Individual
10.
Plant J ; 100(5): 923-937, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31357236

RESUMEN

Plant steroid hormones brassinosteroids (BRs) regulate plant growth and development at many different levels. Recent research has revealed that stress-responsive NAC (petunia NAM and Arabidopsis ATAF1, ATAF2, and CUC2) transcription factor RD26 is regulated by BR signaling and antagonizes BES1 in the interaction between growth and drought stress signaling. However, the upstream signaling transduction components that activate RD26 during drought are still unknown. Here, we demonstrate that the function of RD26 is modulated by GSK3-like kinase BIN2 and protein phosphatase 2C ABI1. We show that ABI1, a negative regulator in abscisic acid (ABA) signaling, dephosphorylates and destabilizes BIN2 to inhibit BIN2 kinase activity. RD26 protein is stabilized by ABA and dehydration in a BIN2-dependent manner. BIN2 directly interacts and phosphorylates RD26 in vitro and in vivo. BIN2 phosphorylation of RD26 is required for RD26 transcriptional activation on drought-responsive genes. RD26 overexpression suppressed the brassinazole (BRZ)  insensitivity of BIN2 triple mutant bin2 bil1 bil2, and BIN2 function is required for the drought tolerance of RD26 overexpression plants. Taken together, our data suggest a drought signaling mechanism in which drought stress relieves ABI1 inhibition of BIN2, allowing BIN2 activation. Sequentially, BIN2 phosphorylates and stabilizes RD26 to promote drought stress response.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacología , Sequías , Mutación , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Proteínas Quinasas/química , Proteínas Quinasas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Esteroides Heterocíclicos/metabolismo , Esteroides Heterocíclicos/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Factores de Transcripción/genética
11.
Plant Cell ; 29(6): 1425-1439, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28576847

RESUMEN

Plant steroid hormones, brassinosteroids (BRs), play important roles in growth and development. BR signaling controls the activities of BRASSINOSTERIOD INSENSITIVE1-EMS-SUPPRESSOR1/BRASSINAZOLE-RESISTANT1 (BES1/BZR1) family transcription factors. Besides the role in promoting growth, BRs are also implicated in plant responses to drought stress. However, the molecular mechanisms by which BRs regulate drought response have just begun to be revealed. The functions of WRKY transcription factors in BR-regulated plant growth have not been established, although their roles in stress responses are well documented. Here, we found that three Arabidopsis thaliana group III WRKY transcription factors, WRKY46, WRKY54, and WRKY70, are involved in both BR-regulated plant growth and drought response as the wrky46 wrky54 wrky70 triple mutant has defects in BR-regulated growth and is more tolerant to drought stress. RNA-sequencing analysis revealed global roles of WRKY46, WRKY54, and WRKY70 in promoting BR-mediated gene expression and inhibiting drought responsive genes. WRKY54 directly interacts with BES1 to cooperatively regulate the expression of target genes. In addition, WRKY54 is phosphorylated and destabilized by GSK3-like kinase BR-INSENSITIVE2, a negative regulator in the BR pathway. Our results therefore establish WRKY46/54/70 as important signaling components that are positively involved in BR-regulated growth and negatively involved in drought responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Sequías , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética
12.
Biochem J ; 474(16): 2641-2661, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28751549

RESUMEN

Plants are faced with a barrage of stresses in their environment and must constantly balance their growth and survival. As such, plants have evolved complex control systems that perceive and respond to external and internal stimuli in order to optimize these responses, many of which are mediated by signaling molecules such as phytohormones. One such class of molecules called Brassinosteroids (BRs) are an important group of plant steroid hormones involved in numerous aspects of plant life including growth, development and response to various stresses. The molecular determinants of the BR signaling pathway have been extensively defined, starting with the membrane-localized receptor BRI1 and co-receptor BAK1 and ultimately culminating in the activation of BES1/BZR1 family transcription factors, which direct a transcriptional network controlling the expression of thousands of genes enabling BRs to influence growth and stress programs. Here, we highlight recent progress in understanding the relationship between the BR pathway and plant stress responses and provide an integrated view of the mechanisms mediating cross-talk between BR and stress signaling.


Asunto(s)
Brasinoesteroides/metabolismo , Fenómenos Fisiológicos de las Plantas , Transducción de Señal/fisiología , Estrés Fisiológico , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo
13.
Photosynth Res ; 116(2-3): 437-53, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23703455

RESUMEN

Chloroplast biogenesis is an essential light-dependent process involving the differentiation of photosynthetically competent chloroplasts from precursors that include undifferentiated proplastids in leaf meristems, as well as etioplasts in dark-grown seedlings. The mechanisms that govern these developmental processes are poorly understood, but entail the coordinated expression of nuclear and plastid genes. This coordination is achieved, in part, by signals generated in response to the metabolic and developmental state of the plastid that regulate the transcription of nuclear genes for photosynthetic proteins (retrograde signaling). Variegation mutants are powerful tools to understand pathways of chloroplast biogenesis, and over the years our lab has focused on immutans (im) and variegated2 (var2), two nuclear gene-induced variegations of Arabidopsis. im and var2 are among the best-characterized chloroplast biogenesis mutants, and they define the genes for plastid terminal oxidase (PTOX) and the AtFtsH2 subunit of the thylakoid FtsH metalloprotease complex, respectively. To gain insight into the function of these proteins, forward and reverse genetic approaches have been used to identify second-site suppressors of im and var2 that replace or bypass the need for PTOX and AtFtsH2 during chloroplast development. In this review, we provide a brief update of im and var2 and the functions of PTOX and AtFtsH2. We then summarize information about second-site suppressors of im and var2 that have been identified to date, and describe how they have provided insight into mechanisms of photosynthesis and pathways of chloroplast development.


Asunto(s)
Proteasas ATP-Dependientes/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cloroplastos/metabolismo , Genes de Plantas/genética , Genes Supresores , Proteínas de la Membrana/genética
14.
Curr Opin Plant Biol ; 76: 102444, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37696725

RESUMEN

Single-cell genomics technologies are ushering in a new research era. In this review, we summarize the benefits and current challenges of using these technologies to probe the transcriptional regulation of plant development. In addition to profiling cells at a single snapshot in time, researchers have recently produced time-resolved datasets to map cell responses to stimuli. Live-imaging and spatial transcriptomic techniques are rapidly being adopted to link a cell's transcriptional profile with its spatial location within a tissue. Combining these technologies is a powerful spatiotemporal approach to investigate cell plasticity and developmental responses that contribute to plant resilience. Although there are hurdles to overcome, we conclude by discussing how single-cell genomics is poised to address developmental questions in the coming years.


Asunto(s)
Genómica , Transcriptoma , Genómica/métodos , Perfilación de la Expresión Génica , Desarrollo de la Planta/genética , Análisis de la Célula Individual/métodos
15.
Autophagy ; 19(4): 1293-1310, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36151786

RESUMEN

Macroautophagy/autophagy is a conserved recycling process that maintains cellular homeostasis during environmental stress. Autophagy is negatively regulated by TOR (target of rapamycin), a nutrient-regulated protein kinase that in plants is activated by several phytohormones, leading to increased growth. However, the detailed molecular mechanisms by which TOR integrates autophagy and hormone signaling are poorly understood. Here, we show that TOR modulates brassinosteroid (BR)-regulated plant growth and stress-response pathways. Active TOR was required for full BR-mediated growth in Arabidopsis thaliana. Autophagy was constitutively up-regulated upon blocking BR biosynthesis or signaling, and down-regulated by increasing the activity of the BR pathway. BIN2 (brassinosteroid-insensitive 2) kinase, a GSK3-like kinase functioning as a negative regulator in BR signaling, directly phosphorylated RAPTOR1B (regulatory-associated protein of TOR 1B), a substrate-recruiting subunit in the TOR complex, at a conserved serine residue within a typical BIN2 phosphorylation motif. Mutation of RAPTOR1B serine 916 to alanine, to block phosphorylation by BIN2, repressed autophagy and increased phosphorylation of the TOR substrate ATG13a (autophagy-related protein 13a). By contrast, this mutation had only a limited effect on growth. We present a model in which RAPTOR1B is phosphorylated and inhibited by BIN2 when BRs are absent, activating the autophagy pathway. When BRs signal and inhibit BIN2, RAPTOR1B is thus less inhibited by BIN2 phosphorylation. This leads to increased TOR activity and ATG13a phosphorylation, and decreased autophagy activity. Our studies define a new mechanism by which coordination between BR and TOR signaling pathways helps to maintain the balance between plant growth and stress responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fosforilación , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas de Arabidopsis/metabolismo , Autofagia , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas/metabolismo
16.
Science ; 379(6639): eadf4721, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36996230

RESUMEN

Brassinosteroids are plant steroid hormones that regulate diverse processes, such as cell division and cell elongation, through gene regulatory networks that vary in space and time. By using time series single-cell RNA sequencing to profile brassinosteroid-responsive gene expression specific to different cell types and developmental stages of the Arabidopsis root, we identified the elongating cortex as a site where brassinosteroids trigger a shift from proliferation to elongation associated with increased expression of cell wall-related genes. Our analysis revealed HOMEOBOX FROM ARABIDOPSIS THALIANA 7 (HAT7) and GT-2-LIKE 1 (GTL1) as brassinosteroid-responsive transcription factors that regulate cortex cell elongation. These results establish the cortex as a site of brassinosteroid-mediated growth and unveil a brassinosteroid signaling network regulating the transition from proliferation to elongation, which illuminates aspects of spatiotemporal hormone responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brasinoesteroides , Diferenciación Celular , División Celular , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Reguladores del Crecimiento de las Plantas , Raíces de Plantas , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , División Celular/genética , Diferenciación Celular/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
17.
STAR Protoc ; 3(4): 101729, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36181683

RESUMEN

We describe a protocol to perform fast and non-arbitrary quality control of single-cell RNA sequencing (scRNA-seq) raw data using scKB and COPILOT. scKB is a wrapper script of kallisto and bustools for accelerated alignment and transcript count matrix generation, which runs significantly faster than the popular tool Cell Ranger. COPILOT then offers non-arbitrary background noise removal by comparing distributions of low-quality and high-quality cells. Together, this protocol streamlines the processing workflow and provides an easy entry for new scRNA-seq users. For complete details on the use and execution of this protocol, please refer to Shahan et al. (2022).


Asunto(s)
Análisis de Expresión Génica de una Sola Célula , Programas Informáticos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Control de Calidad
18.
Front Plant Sci ; 13: 961096, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36082288

RESUMEN

FERONIA (FER) receptor kinase plays versatile roles in plant growth and development, biotic and abiotic stress responses, and reproduction. Autophagy is a conserved cellular recycling process that is critical for balancing plant growth and stress responses. Target of Rapamycin (TOR) has been shown to be a master regulator of autophagy. Our previous multi-omics analysis with loss-of-function fer-4 mutant implicated that FER functions in the autophagy pathway. We further demonstrated here that the fer-4 mutant displayed constitutive autophagy, and FER is required for TOR kinase activity measured by S6K1 phosphorylation and by root growth inhibition assay to TOR kinase inhibitor AZD8055. Taken together, our study provides a previously unknown mechanism by which FER functions through TOR to negatively regulate autophagy.

19.
Dev Cell ; 57(4): 543-560.e9, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35134336

RESUMEN

In all multicellular organisms, transcriptional networks orchestrate organ development. The Arabidopsis root, with its simple structure and indeterminate growth, is an ideal model for investigating the spatiotemporal transcriptional signatures underlying developmental trajectories. To map gene expression dynamics across root cell types and developmental time, we built a comprehensive, organ-scale atlas at single-cell resolution. In addition to estimating developmental progressions in pseudotime, we employed the mathematical concept of optimal transport to infer developmental trajectories and identify their underlying regulators. To demonstrate the utility of the atlas to interpret new datasets, we profiled mutants for two key transcriptional regulators at single-cell resolution, shortroot and scarecrow. We report transcriptomic and in vivo evidence for tissue trans-differentiation underlying a mixed cell identity phenotype in scarecrow. Our results support the atlas as a rich community resource for unraveling the transcriptional programs that specify and maintain cell identity to regulate spatiotemporal organ development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes/genética , Raíces de Plantas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Redes Reguladoras de Genes/fisiología , Mutación/genética , Raíces de Plantas/metabolismo , Análisis de la Célula Individual/métodos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/fisiología
20.
Nat Commun ; 12(1): 5858, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34615886

RESUMEN

Brassinosteroids (BRs) are plant steroid hormones that regulate cell division and stress response. Here we use a systems biology approach to integrate multi-omic datasets and unravel the molecular signaling events of BR response in Arabidopsis. We profile the levels of 26,669 transcripts, 9,533 protein groups, and 26,617 phosphorylation sites from Arabidopsis seedlings treated with brassinolide (BL) for six different lengths of time. We then construct a network inference pipeline called Spatiotemporal Clustering and Inference of Omics Networks (SC-ION) to integrate these data. We use our network predictions to identify putative phosphorylation sites on BES1 and experimentally validate their importance. Additionally, we identify BRONTOSAURUS (BRON) as a transcription factor that regulates cell division, and we show that BRON expression is modulated by BR-responsive kinases and transcription factors. This work demonstrates the power of integrative network analysis applied to multi-omic data and provides fundamental insights into the molecular signaling events occurring during BR response.


Asunto(s)
Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Transducción de Señal , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , División Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Nucleares/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteómica , Plantones/metabolismo , Esteroides Heterocíclicos , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA