Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 555(7694): 41-47, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29493591

RESUMEN

Insufficient growth during childhood is associated with poor health outcomes and an increased risk of death. Between 2000 and 2015, nearly all African countries demonstrated improvements for children under 5 years old for stunting, wasting, and underweight, the core components of child growth failure. Here we show that striking subnational heterogeneity in levels and trends of child growth remains. If current rates of progress are sustained, many areas of Africa will meet the World Health Organization Global Targets 2025 to improve maternal, infant and young child nutrition, but high levels of growth failure will persist across the Sahel. At these rates, much, if not all of the continent will fail to meet the Sustainable Development Goal target-to end malnutrition by 2030. Geospatial estimates of child growth failure provide a baseline for measuring progress as well as a precision public health platform to target interventions to those populations with the greatest need, in order to reduce health disparities and accelerate progress.


Asunto(s)
Desarrollo Infantil , Trastornos del Crecimiento/epidemiología , Crecimiento , Desnutrición/epidemiología , Síndrome Debilitante/epidemiología , África/epidemiología , Preescolar , Femenino , Objetivos , Trastornos del Crecimiento/prevención & control , Humanos , Lactante , Recién Nacido , Masculino , Desnutrición/prevención & control , Prevalencia , Salud Pública/estadística & datos numéricos , Delgadez/epidemiología , Delgadez/prevención & control , Síndrome Debilitante/prevención & control , Organización Mundial de la Salud
2.
Malar J ; 22(1): 239, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37605226

RESUMEN

Border malaria is frequently cited as an obstacle to malaria elimination and sometimes used as a justification for the failure of elimination. Numerous border or cross-border meetings and elimination initiatives have been convened to address this bottleneck to elimination. In this Perspective, border malaria is defined as malaria transmission, or the potential for transmission, across or along shared land borders between countries where at least one of them has ongoing malaria transmission. Border malaria is distinct from malaria importation, which can occur anywhere and in any country. The authors' analysis shows that the remaining transmission foci of malaria-eliminating countries tend to occur in the vicinity of international land borders that they share with neighbouring endemic countries. The reasons why international land borders often represent the last mile in malaria elimination are complex. The authors argue that the often higher intrinsic transmission potential, the neglect of investment and development, the constant risk of malaria importation due to cross-border movement, the challenges of implementing interventions in complex environments and uncoordinated action in a cross-border shared transmission focus all contribute to the difficulties of malaria elimination in border areas. Border malaria reflects the limitations of the current tools and interventions for malaria elimination and implies the need for social cohesion, basic health services, community economic conditions, and policy dialogue and coordination to achieve the expected impact of malaria interventions. Given the uniqueness of each border and the complex and multifaceted nature of border malaria, a situation analysis to define and characterize the determinants of transmission is essential to inform a problem-solving mindset and develop appropriate strategies to eliminate malaria in these areas.


Asunto(s)
Inversiones en Salud , Malaria , Humanos , Malaria/epidemiología , Malaria/prevención & control , Movimiento
3.
Nature ; 550(7677): 515-518, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-29019978

RESUMEN

Malaria transmission is influenced by climate, land use and deliberate interventions. Recent declines have been observed in malaria transmission. Here we show that the African continent has witnessed a long-term decline in the prevalence of Plasmodium falciparum from 40% prevalence in the period 1900-1929 to 24% prevalence in the period 2010-2015, a trend that has been interrupted by periods of rapidly increasing or decreasing transmission. The cycles and trend over the past 115 years are inconsistent with explanations in terms of climate or deliberate intervention alone. Previous global initiatives have had minor impacts on malaria transmission, and a historically unprecedented decline has been observed since 2000. However, there has been little change in the high transmission belt that covers large parts of West and Central Africa. Previous efforts to model the changing patterns of P. falciparum transmission intensity in Africa have been limited to the past 15 years or have used maps drawn from historical expert opinions. We provide quantitative data, from 50,424 surveys at 36,966 geocoded locations, that covers 115 years of malaria history in sub-Saharan Africa; inferring from these data to future trends, we would expect continued reductions in malaria transmission, punctuated with resurgences.


Asunto(s)
Mapeo Geográfico , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Plasmodium falciparum/aislamiento & purificación , África del Sur del Sahara/epidemiología , Conjuntos de Datos como Asunto , Femenino , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Malaria Falciparum/prevención & control , Malaria Falciparum/transmisión , Prevalencia
4.
Mol Biol Evol ; 38(1): 274-289, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32898225

RESUMEN

Substantial progress has been made globally to control malaria, however there is a growing need for innovative new tools to ensure continued progress. One approach is to harness genetic sequencing and accompanying methodological approaches as have been used in the control of other infectious diseases. However, to utilize these methodologies for malaria, we first need to extend the methods to capture the complex interactions between parasites, human and vector hosts, and environment, which all impact the level of genetic diversity and relatedness of malaria parasites. We develop an individual-based transmission model to simulate malaria parasite genetics parameterized using estimated relationships between complexity of infection and age from five regions in Uganda and Kenya. We predict that cotransmission and superinfection contribute equally to within-host parasite genetic diversity at 11.5% PCR prevalence, above which superinfections dominate. Finally, we characterize the predictive power of six metrics of parasite genetics for detecting changes in transmission intensity, before grouping them in an ensemble statistical model. The model predicted malaria prevalence with a mean absolute error of 0.055. Different assumptions about the availability of sample metadata were considered, with the most accurate predictions of malaria prevalence made when the clinical status and age of sampled individuals is known. Parasite genetics may provide a novel surveillance tool for estimating the prevalence of malaria in areas in which prevalence surveys are not feasible. However, the findings presented here reinforce the need for patient metadata to be recorded and made available within all future attempts to use parasite genetics for surveillance.


Asunto(s)
Malaria/transmisión , Modelos Estadísticos , Plasmodium/genética , Adolescente , Niño , Preescolar , Variación Genética , Humanos , Kenia/epidemiología , Malaria/epidemiología , Malaria/parasitología , Mosquitos Vectores/parasitología , Prevalencia , Sobreinfección , Uganda/epidemiología
5.
Malar J ; 19(1): 141, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32268917

RESUMEN

BACKGROUND: As more countries progress towards malaria elimination, a better understanding of the most critical health system features for enabling and supporting malaria control and elimination is needed. METHODS: All available health systems data relevant for malaria control were collated from 23 online data repositories. Principal component analysis was used to create domain specific health system performance measures. Multiple regression model selection approaches were used to identify key health systems predictors of progress in malaria control in the 2000-2016 period among 105 countries. Additional analysis was performed within malaria burden groups. RESULTS: There was large heterogeneity in progress in malaria control in the 2000-2016 period. In univariate analysis, several health systems factors displayed a strong positive correlation with reductions in malaria burden between 2000 and 2016. In multivariable models, delivery of routine services and hospital capacity were strongly predictive of reductions in malaria cases, especially in high burden countries. In low-burden countries approaching elimination, primary health center density appeared negatively associated with progress while hospital capacity was positively correlated with eliminating malaria. CONCLUSIONS: The findings presented in this manuscript suggest that strengthening health systems can be an effective strategy for reducing malaria cases, especially in countries with high malaria burden. Potential returns appear particularly high in the area of service delivery.


Asunto(s)
Erradicación de la Enfermedad/estadística & datos numéricos , Salud Global/estadística & datos numéricos , Malaria/prevención & control , Humanos , Análisis de Regresión
6.
Malar J ; 19(1): 356, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028337

RESUMEN

BACKGROUND: Malaria was first reported in Rwanda in the early 1900s with significant heterogeneity and volatility in transmission over subsequent decades. Here, a comprehensive literature review of malaria transmission patterns and control strategies in Rwanda between 1900 and 2018 is presented to provide insight into successes and challenges in the country and to inform the future of malaria control in Rwanda. METHODS: A systematic literature search of peer-reviewed publications (Web of Knowledge, PubMed, Google Scholar, and the World Health Organization Library (WHOLIS) and grey literature on malaria control in Rwanda between 1900 and 2019 was conducted with the following search terms: "malaria"", "Rwanda", "epidemiology", "control", "treatment", and/or "prevention." Reports and other relevant documents were also obtained from the Rwanda National Malaria Control Programme (NMCP). To inform this literature review and evidence synthesis, epidemiologic and intervention data were collated from NMCP and partner reports, the national routine surveillance system, and population surveys. RESULTS: Two hundred sixty-eight peer-reviewed publications and 56 grey literature items were reviewed, and information was extracted. The history of malaria control in Rwanda is thematically described here according to five phases: 1900 to 1954 before the launch of the Global Malaria Eradication Programme (GMEP); (2) Implementation of the GMEP from 1955 to 1969; (3) Post- GMEP to 1994 Genocide; (4) the re-establishment of malaria control from 1995 to 2005, and (5) current malaria control efforts from 2006 to 2018. The review shows that Rwanda was an early adopter of tools and approaches in the early 2000s, putting the country ahead of the curve and health systems reforms created an enabling environment for an effective malaria control programme. The last two decades have seen unprecedented investments in malaria in Rwanda, resulting in significant declines in disease burden from 2000 to 2011. However, in recent years, these gains appear to have reversed with increasing cases since 2012 although the country is starting to make progress again. CONCLUSION: The review shows the impact and fragility of gains against malaria, even in the context of sustained health system development. Also, as shown in Rwanda, country malaria control programmes should be dynamic and adaptive to respond and address changing settings.


Asunto(s)
Erradicación de la Enfermedad/métodos , Malaria/historia , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Malaria/prevención & control , Malaria/transmisión , Rwanda
8.
Malar J ; 17(1): 340, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30257697

RESUMEN

BACKGROUND: Spatial and temporal malaria risk maps are essential tools to monitor the impact of control, evaluate priority areas to reorient intervention approaches and investments in malaria endemic countries. Here, the analysis of 36 years data on Plasmodium falciparum prevalence is used to understand the past and chart a future for malaria control in Kenya by confidently highlighting areas within important policy relevant thresholds to allow either the revision of malaria strategies to those that support pre-elimination or those that require additional control efforts. METHODS: Plasmodium falciparum parasite prevalence (PfPR) surveys undertaken in Kenya between 1980 and 2015 were assembled. A spatio-temporal geostatistical model was fitted to predict annual malaria risk for children aged 2-10 years (PfPR2-10) at 1 × 1 km spatial resolution from 1990 to 2015. Changing PfPR2-10 was compared against plausible explanatory variables. The fitted model was used to categorize areas with varying degrees of prediction probability for two important policy thresholds PfPR2-10 < 1% (non-exceedance probability) or ≥ 30% (exceedance probability). RESULTS: 5020 surveys at 3701 communities were assembled. Nationally, there was an 88% reduction in the mean modelled PfPR2-10 from 21.2% (ICR: 13.8-32.1%) in 1990 to 2.6% (ICR: 1.8-3.9%) in 2015. The most significant decline began in 2003. Declining prevalence was not equal across the country and did not directly coincide with scaled vector control coverage or changing therapeutics. Over the period 2013-2015, of Kenya's 47 counties, 23 had an average PfPR2-10 of < 1%; four counties remained ≥ 30%. Using a metric of 80% probability, 8.5% of Kenya's 2015 population live in areas with PfPR2-10 ≥ 30%; while 61% live in areas where PfPR2-10 is < 1%. CONCLUSIONS: Kenya has made substantial progress in reducing the prevalence of malaria over the last 26 years. Areas today confidently and consistently with < 1% prevalence require a revised approach to control and a possible consideration of strategies that support pre-elimination. Conversely, there remains several intractable areas where current levels and approaches to control might be inadequate. The modelling approaches presented here allow the Ministry of Health opportunities to consider data-driven model certainty in defining their future spatial targeting of resources.


Asunto(s)
Control de Enfermedades Transmisibles , Malaria Falciparum/epidemiología , Plasmodium falciparum/fisiología , Niño , Preescolar , Control de Enfermedades Transmisibles/métodos , Humanos , Kenia/epidemiología , Malaria Falciparum/parasitología , Prevalencia , Análisis Espacio-Temporal
9.
Malar J ; 17(1): 88, 2018 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-29463264

RESUMEN

BACKGROUND: Countries planning malaria elimination must adapt from sustaining universal control to targeted intervention and surveillance. Decisions to make this transition require interpretable information, including malaria parasite survey data. As transmission declines, observed parasite prevalence becomes highly heterogeneous with most communities reporting estimates close to zero. Absolute estimates of prevalence become hard to interpret as a measure of transmission intensity and suitable statistical methods are required to handle uncertainty of area-wide predictions that are programmatically relevant. METHODS: A spatio-temporal geostatistical binomial model for Plasmodium falciparum prevalence (PfPR) was developed using data from cross-sectional surveys conducted in Somalia in 2005, 2007-2011 and 2014. The fitted model was then used to generate maps of non-exceedance probabilities, i.e. the predictive probability that the region-wide population-weighted average PfPR for children between 2 and 10 years (PfPR2-10) lies below 1 and 5%. A comparison was carried out with the decision-making outcomes from those of standard approaches that ignore uncertainty in prevalence estimates. RESULTS: By 2010, most regions in Somalia were at least 70% likely to be below 5% PfPR2-10 and, by 2014, 17 regions were below 5% PfPR2-10 with a probability greater than 90%. Larger uncertainty is observed using a threshold of 1%. By 2011, only two regions were more than 90% likely of being < 1% PfPR2-10 and, by 2014, only three regions showed such low level of uncertainty. The use of non-exceedance probabilities indicated that there was weak evidence to classify 10 out of the 18 regions as < 1% in 2014, when a greater than 90% non-exceedance probability was required. CONCLUSION: Unlike standard approaches, non-exceedance probabilities of spatially modelled PfPR2-10 allow to quantify uncertainty of prevalence estimates in relation to policy relevant intervention thresholds, providing programmatically relevant metrics to make decisions on transitioning from sustained malaria control to strategies that encompass methods of malaria elimination.


Asunto(s)
Transmisión de Enfermedad Infecciosa , Métodos Epidemiológicos , Malaria Falciparum/epidemiología , Topografía Médica , Niño , Preescolar , Estudios Transversales , Femenino , Política de Salud , Humanos , Masculino , Prevalencia , Somalia/epidemiología , Análisis Espacio-Temporal
10.
Int Stat Rev ; 86(3): 571-597, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33184527

RESUMEN

In this paper, we set out general principles and develop geostatistical methods for the analysis of data from spatio-temporally referenced prevalence surveys. Our objective is to provide a tutorial guide that can be used in order to identify parsimonious geostatistical models for prevalence mapping. A general variogram-based Monte Carlo procedure is proposed to check the validity of the modelling assumptions. We describe and contrast likelihood-based and Bayesian methods of inference, showing how to account for parameter uncertainty under each of the two paradigms. We also describe extensions of the standard model for disease prevalence that can be used when stationarity of the spatio-temporal covariance function is not supported by the data. We discuss how to define predictive targets and argue that exceedance probabilities provide one of the most effective ways to convey uncertainty in prevalence estimates. We describe statistical software for the visualisation of spatio-temporal predictive summaries of prevalence through interactive animations. Finally, we illustrate an application to historical malaria prevalence data from 1 334 surveys conducted in Senegal between 1905 and 2014.

11.
Malar J ; 16(1): 367, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28899379

RESUMEN

BACKGROUND: In high to moderate malaria transmission areas of Kenya, long-lasting insecticidal nets (LLINs) are provided free of charge to pregnant women and infants during routine antenatal care (ANC) and immunization respectively. Quantities of LLINs distributed to clinics are quantified based on a combination of monthly consumption data and population size of target counties. However, this approach has been shown to lead to stock-outs in targeted clinics. In this study, a novel LLINs need quantification approach for clinics in the routine distribution system was developed. The estimated need was then compared to the actual allocation to identify potential areas of LLIN over- or under-allocation in the high malaria transmission areas of Western Kenya. METHODS: A geocoded database of public health facilities was developed and linked to monthly LLIN allocation. A network analysis approach was implemented using the location of all public clinics and topographic layers to model travel time. Estimated travel time, socio-economic and ANC attendance data were used to model clinic catchment areas and the probability of ANC service use within these catchments. These were used to define the number of catchment population who were likely to use these clinics for the year 2015 equivalent to LLIN need. Actual LLIN allocation was compared with the estimated need. Clinics were then classified based on whether allocation matched with the need, and if not, whether they were over or under-allocated. RESULTS: 888 (70%) public health facilities were allocated 591,880 LLINs in 2015. Approximately 682,377 (93%) pregnant women and infants were likely to have attended an LLIN clinic. 36% of the clinics had more LLIN than was needed (over-allocated) while 43% had received less (under-allocated). Increasing efficiency of allocation by diverting over supply of LLIN to clinics with less stock and fully covering 43 clinics that did not receive nets in 2015 would allow for complete matching of need with distribution. CONCLUSION: The proposed spatial modelling framework presents a rationale for equitable allocation of routine LLINs and could be used for quantification of other maternal and child health commodities applicable in different settings. Western Kenya region received adequate LLINs for routine distribution in line with government of Kenya targets, however, the model shows important inefficiencies in the allocation of the LLINs at clinic level.


Asunto(s)
Instituciones de Salud , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Malaria/prevención & control , Control de Mosquitos/estadística & datos numéricos , Instalaciones Públicas , Kenia , Modelos Teóricos , Análisis Espacial
12.
Malar J ; 16(1): 49, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28125996

RESUMEN

BACKGROUND: Although malaria has been traditionally regarded as less of a problem in urban areas compared to neighbouring rural areas, the risk of malaria infection continues to exist in densely populated, urban areas of Africa. Despite the recognition that urbanization influences the epidemiology of malaria, there is little consensus on urbanization relevant for malaria parasite mapping. Previous studies examining the relationship between urbanization and malaria transmission have used products defining urbanization at global/continental scales developed in the early 2000s, that overestimate actual urban extents while the population estimates are over 15 years old and estimated at administrative unit level. METHODS AND RESULTS: This study sought to discriminate an urbanization definition that is most relevant for malaria parasite mapping using individual level malaria infection data obtained from nationally representative household-based surveys. Boosted regression tree (BRT) modelling was used to determine the effect of urbanization on malaria transmission and if this effect varied with urbanization definition. In addition, the most recent high resolution population distribution data was used to determine whether population density had significant effect on malaria parasite prevalence and if so, could population density replace urban classifications in modelling malaria transmission patterns. The risk of malaria infection was shown to decline from rural areas through peri-urban settlements to urban central areas. Population density was found to be an important predictor of malaria risk. The final boosted regression trees (BRT) model with urbanization and population density gave the best model fit (Tukey test p value <0.05) compared to the models with urbanization only. CONCLUSION: Given the challenges in uniformly classifying urban areas across different countries, population density provides a reliable metric to adjust for the patterns of malaria risk in densely populated urban areas. Future malaria risk models can, therefore, be improved by including both population density and urbanization which have both been shown to have significant impact on malaria risk in this study.


Asunto(s)
Malaria Falciparum/epidemiología , Plasmodium falciparum/fisiología , Densidad de Población , Urbanización , África del Sur del Sahara/epidemiología , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Madagascar/epidemiología , Malaria Falciparum/parasitología , Masculino , Prevalencia , Análisis de Regresión
13.
Malar J ; 16(1): 344, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28818071

RESUMEN

BACKGROUND: Health facility-based data reported through routine health information systems form the primary data source for programmatic monitoring and evaluation in most developing countries. The adoption of District Health Information Software (DHIS2) has contributed to improved availability of routine health facility-based data in many low-income countries. An assessment of malaria indicators data reported by health facilities in Kenya during the first 5 years of implementation of DHIS2, from January 2011 to December 2015, was conducted. METHODS: Data on 19 malaria indicators reported monthly by health facilities were extracted from the online Kenya DHIS2 database. Completeness of reporting was analysed for each of the 19 malaria indicators and expressed as the percentage of data values actually reported over the expected number; all health facilities were expected to report data for each indicator for all 12 months in a year. RESULTS: Malaria indicators data were analysed for 6235 public and 3143 private health facilities. Between 2011 and 2015, completeness of reporting in the public sector increased significantly for confirmed malaria cases across all age categories (26.5-41.9%, p < 0.0001, in children aged <5 years; 30.6-51.4%, p < 0.0001, in persons aged ≥5 years). Completeness of reporting of new antenatal care (ANC) clients increased from 53.7 to 70.5%, p < 0.0001). Completeness of reporting of intermittent preventive treatment in pregnancy (IPTp) decreased from 64.8 to 53.7%, p < 0.0001 for dose 1 and from 64.6 to 53.4%, p < 0.0001 for dose 2. Data on malaria tests performed and test results were not available in DHIS2 from 2011 to 2014. In 2015, sparse data on microscopy (11.5% for children aged <5 years; 11.8% for persons aged ≥5 years) and malaria rapid diagnostic tests (RDTs) (8.1% for all ages) were reported. In the private sector, completeness of reporting increased significantly for confirmed malaria cases across all age categories (16.7-23.1%, p < 0.0001, in children aged <5 years; 19.4-28.6%, p < 0.0001, in persons aged ≥5 years). Completeness of reporting also improved for new ANC clients (16.2-23.6%, p < 0.0001), and for IPTp doses 1 and 2 (16.6-20.2%, p < 0.0001 and 15.5-20.5%, p < 0.0001, respectively). In 2015, less than 3% of data values for malaria tests performed were reported in DHIS2 from the private sector. CONCLUSIONS: There have been sustained improvements in the completeness of data reported for most key malaria indicators since the adoption of DHIS2 in Kenya in 2011. However, major data gaps were identified for the malaria-test indicator and overall low reporting across all indicators from private health facilities. A package of proven DHIS2 implementation interventions and performance-based incentives should be considered to improve private-sector data reporting.


Asunto(s)
Notificación de Enfermedades/estadística & datos numéricos , Sistemas de Información en Salud , Malaria , Humanos , Kenia , Programas Informáticos
14.
Malar J ; 16(1): 475, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29162099

RESUMEN

BACKGROUND: One pillar to monitoring progress towards the Sustainable Development Goals is the investment in high quality data to strengthen the scientific basis for decision-making. At present, nationally-representative surveys are the main source of data for establishing a scientific evidence base, monitoring, and evaluation of health metrics. However, little is known about the optimal precisions of various population-level health and development indicators that remains unquantified in nationally-representative household surveys. Here, a retrospective analysis of the precision of prevalence from these surveys was conducted. METHODS: Using malaria indicators, data were assembled in nine sub-Saharan African countries with at least two nationally-representative surveys. A Bayesian statistical model was used to estimate between- and within-cluster variability for fever and malaria prevalence, and insecticide-treated bed nets (ITNs) use in children under the age of 5 years. The intra-class correlation coefficient was estimated along with the optimal sample size for each indicator with associated uncertainty. FINDINGS: Results suggest that the estimated sample sizes for the current nationally-representative surveys increases with declining malaria prevalence. Comparison between the actual sample size and the modelled estimate showed a requirement to increase the sample size for parasite prevalence by up to 77.7% (95% Bayesian credible intervals 74.7-79.4) for the 2015 Kenya MIS (estimated sample size of children 0-4 years 7218 [7099-7288]), and 54.1% [50.1-56.5] for the 2014-2015 Rwanda DHS (12,220 [11,950-12,410]). CONCLUSION: This study highlights the importance of defining indicator-relevant sample sizes to achieve the required precision in the current national surveys. While expanding the current surveys would need additional investment, the study highlights the need for improved approaches to cost effective sampling.


Asunto(s)
Países en Desarrollo/estadística & datos numéricos , Malaria/prevención & control , África del Sur del Sahara/epidemiología , Teorema de Bayes , Humanos , Prevalencia , Reproducibilidad de los Resultados , Estudios Retrospectivos , Encuestas y Cuestionarios
15.
Malar J ; 16(1): 177, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28446198

RESUMEN

BACKGROUND: Since 2005, the Government of Ghana and its partners, in concerted efforts to control malaria, scaled up the use of artemisinin-based combination therapy (ACT) and insecticide-treated nets (ITNs). Beginning in 2011, a mass campaign of long-lasting insecticidal nets (LLINs) was implemented, targeting all the population. The impact of these interventions on malaria cases, admissions and deaths was assessed using data from district hospitals. METHODS: Records of malaria cases and deaths and availability of ACT in 88 hospitals, as well as at district level, ITN distribution, and indoor residual spraying were reviewed. Annual proportion of the population potentially protected by ITNs was estimated with the assumption that each LLIN covered 1.8 persons for 3 years. Changes in trends of cases and deaths in 2015 were estimated by segmented log-linear regression, comparing trends in post-scale-up (2011-2015) with that of pre-scale-up (2005-2010) period. Trends of mortality in children under 5 years old from population-based household surveys were also compared with the trends observed in hospitals for the same time period. RESULTS: Among all ages, the number of outpatient malaria cases (confirmed and presumed) declined by 57% (95% confidence interval [CI], 47-66%) by first half of 2015 (during the post-scale-up) compared to the pre-scale-up (2005-2010) period. The number of microscopically confirmed cases decreased by 53% (28-69%) while microscopic testing was stable. Test positivity rate (TPR) decreased by 41% (19-57%). The change in malaria admissions was insignificant while malaria deaths fell significantly by 65% (52-75%). In children under 5 years old, total malaria outpatient cases, admissions and deaths decreased by 50% (32-63%), 46% (19-75%) and 70% (49-82%), respectively. The proportion of outpatient malaria cases, admissions and deaths of all-cause conditions in both all ages and children under five also fell significantly by >30%. Similar decreases in the main malaria indicators were observed in the three epidemiological strata (coastal, forest, savannah). All-cause admissions increased significantly in patients covered by the National Health Insurance Scheme (NHIS) compared to the non-insured. The non-malaria cases and non-malaria deaths increased or remained unchanged during the same period. All-cause mortality for children under 5 years old in household surveys, similar to those observed in the hospitals, declined by 43% between 2008 and 2014. CONCLUSIONS: The data provide compelling evidence of impact following LLIN mass campaigns targeting all ages since 2011, while maintaining other anti-malarial interventions. Malaria cases and deaths decreased by over 50 and 65%, respectively. The declines were stronger in children under five. Test positivity rate in all ages decreased by >40%. The decrease in malaria deaths was against a backdrop of increased admissions owing to free access to hospitalization through the NHIS. The study demonstrated that retrospective health facility-based data minimize reporting biases to assess effect of interventions. Malaria control in Ghana is dependent on sustained coverage of effective interventions and strengthened surveillance is vital to monitor progress of these investments.


Asunto(s)
Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Malaria/epidemiología , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Ghana/epidemiología , Hospitalización/estadística & datos numéricos , Humanos , Lactante , Recién Nacido , Malaria/mortalidad , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto Joven
16.
BMC Infect Dis ; 17(1): 720, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29141606

RESUMEN

BACKGROUND: Use of bednets reduces malaria morbidity and mortality. In Kilifi, Kenya, there was a mass distribution of free nets to children < 5 years in 2006. In 2009, a new policy was implemented to offer bednets to pregnant women and children < 5 years free of charge. Nets were again distributed to children and adults through national mass campaigns in 2012 and 2015. We aimed to evaluate trends in bednet ownership and usage, and the effect of bednets on the incidence of malaria hospitalization in children < 5 years within the Kilifi Health and Demographic Surveillance System (KHDSS). METHODS: Bednet ownership and usage were assessed during eight routine enumeration rounds of the KHDSS between 2008 and 2015. Malaria admissions (i.e. admissions to hospital with P. falciparum > 2500 parasitemia per µl) among children < 5 years were captured using a system of continuous vital registration that links admissions at Kilifi County Hospital to the KHDSS population register. Survival analysis was used to assess relative risk of hospitalization with malaria among children that reported using a bednet compared to those who did not. RESULTS: We observed 63% and 62% mean bednet ownership and usage, respectively, over the eight-survey period. Among children < 5 years, reported bednet ownership in October-December 2008 was 69% and in March-August 2009 was 73% (p < 0.001). An increase was also observed following the mass distribution campaigns in 2012 (62% in May-July 2012 vs 90% in May-October 2013, p < 0.001) and 2015 (68% in June-September 2015 vs 93% in October-November 2015, p < 0.001). Among children <5 years who reported using a net the night prior to the survey, the incidence of malaria hospitalization per 1000 child-years was 2.91 compared to 4.37 among those who did not (HR = 0.67, 95% CI: 0.52, 0.85 [p = 0.001]). CONCLUSION: On longitudinal surveillance, increasing bednet ownership and usage corresponded to mass distribution campaigns; however, this method of delivering bednets did not result in sustained improvements in coverage. Among children < 5 years old bednet use was associated with a 33% decreased incidence of malaria hospitalization.


Asunto(s)
Mosquiteros Tratados con Insecticida/tendencias , Malaria/epidemiología , Adolescente , Niño , Preescolar , Femenino , Encuestas Epidemiológicas , Hospitalización , Humanos , Incidencia , Lactante , Recién Nacido , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Kenia/epidemiología , Malaria/mortalidad , Malaria/prevención & control , Masculino , Riesgo , Estaciones del Año , Análisis de Supervivencia
17.
Int J Health Geogr ; 16(1): 34, 2017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28923070

RESUMEN

BACKGROUND: Precise quantification of health service utilisation is important for the estimation of disease burden and allocation of health resources. Current approaches to mapping health facility utilisation rely on spatial accessibility alone as the predictor. However, other spatially varying social, demographic and economic factors may affect the use of health services. The exclusion of these factors can lead to the inaccurate estimation of health facility utilisation. Here, we compare the accuracy of a univariate spatial model, developed only from estimated travel time, to a multivariate model that also includes relevant social, demographic and economic factors. METHODS: A theoretical surface of travel time to the nearest public health facility was developed. These were assigned to each child reported to have had fever in the Kenya demographic and health survey of 2014 (KDHS 2014). The relationship of child treatment seeking for fever with travel time, household and individual factors from the KDHS2014 were determined using multilevel mixed modelling. Bayesian information criterion (BIC) and likelihood ratio test (LRT) tests were carried out to measure how selected factors improve parsimony and goodness of fit of the time model. Using the mixed model, a univariate spatial model of health facility utilisation was fitted using travel time as the predictor. The mixed model was also used to compute a multivariate spatial model of utilisation, using travel time and modelled surfaces of selected household and individual factors as predictors. The univariate and multivariate spatial models were then compared using the receiver operating area under the curve (AUC) and a percent correct prediction (PCP) test. RESULTS: The best fitting multivariate model had travel time, household wealth index and number of children in household as the predictors. These factors reduced BIC of the time model from 4008 to 2959, a change which was confirmed by the LRT test. Although there was a high correlation of the two modelled probability surfaces (Adj R 2 = 88%), the multivariate model had better AUC compared to the univariate model; 0.83 versus 0.73 and PCP 0.61 versus 0.45 values. CONCLUSION: Our study shows that a model that uses travel time, as well as household and individual-level socio-demographic factors, results in a more accurate estimation of use of health facilities for the treatment of childhood fever, compared to one that relies on only travel time.


Asunto(s)
Fiebre/epidemiología , Mapeo Geográfico , Accesibilidad a los Servicios de Salud , Aceptación de la Atención de Salud , Navegación Espacial , Niño , Preescolar , Femenino , Fiebre/terapia , Accesibilidad a los Servicios de Salud/estadística & datos numéricos , Encuestas Epidemiológicas/métodos , Humanos , Kenia/epidemiología , Masculino , Análisis Multivariante , Aceptación de la Atención de Salud/estadística & datos numéricos
18.
Int Stat Rev ; 85(1): 164-176, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28450758

RESUMEN

The aim of this study was to assess spatial co-occurrence of acute respiratory infections (ARI), diarrhoea and stunting among children of the age between 6 and 59 months in Somalia. Data were obtained from routine biannual nutrition surveys conducted by the Food and Agriculture Organization 2007-2010. A Bayesian hierarchical geostatistical shared component model was fitted to the residual spatial components of the three health conditions. Risk maps of the common spatial effects at 1×1 km resolution were derived. The empirical correlations of the enumeration area proportion were 0.37, 0.63 and 0.66 for ARI and stunting, diarrhoea and stunting and ARI and diarrhoea, respectively. Spatially, the posterior residual effects ranged 0.03-20.98, 0.16-6.37 and 0.08-9.66 for shared component between ARI and stunting, diarrhoea and stunting and ARI and diarrhoea, respectively. The analysis showed clearly that the spatial shared component between ARI, diarrhoea and stunting was higher in the southern part of the country. Interventions aimed at controlling and mitigating the adverse effects of these three childhood health conditions should focus on their common putative risk factors, particularly in the South in Somalia.

19.
Malar J ; 15(1): 591, 2016 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-27931229

RESUMEN

BACKGROUND: The use of malaria infection prevalence among febrile patients at clinics has a potential to be a valuable epidemiological surveillance tool. However, routine data are incomplete and not all fevers are tested. This study was designed to screen all fevers for malaria infection in Kenya to explore the epidemiology of fever test positivity rates. METHODS: Random sampling was used within five malaria epidemiological zones of Kenya (i.e., high lake endemic, moderate coast endemic, highland epidemic, seasonal low transmission and low risk zones). The selected sample was representative of the number of hospitals, health centres and dispensaries within each zone. Fifty patients with fever presenting to each sampled health facility during the short rainy season were screened for malaria infection using a rapid diagnostic test (RDT). Details of age, pregnancy status and basic demographics were recorded for each patient screened. RESULTS: 10,557 febrile patients presenting to out-patient clinics at 234 health facilities were screened for malaria infection. 1633 (15.5%) of the patients surveyed were RDT positive for malaria at 124 (53.0%) facilities. Infection prevalence among non-pregnant patients varied between malaria risk zones, ranging from 0.6% in the low risk zone to 41.6% in the high lake endemic zone. Test positivity rates (TPR) by age group reflected the differences in the intensity of transmission between epidemiological zones. In the lake endemic zone, 6% of all infections were among children aged less than 1 year, compared to 3% in the coast endemic, 1% in the highland epidemic zone, less than 1% in the seasonal low transmission zone and 0% in the low risk zone. Test positivity rate was 31% among febrile pregnant women in the high lake endemic zone compared to 9% in the coast endemic and highland epidemic zones, 3.2% in the seasonal low transmission zone and zero in the low risk zone. CONCLUSION: Malaria infection rates among febrile patients, with supporting data on age and pregnancy status presenting to clinics in Kenya can provide invaluable epidemiological data on spatial heterogeneity of malaria and serve as replacements to more expensive community-based infection rates to plan and monitor malaria control.


Asunto(s)
Fiebre/etiología , Instituciones de Salud , Malaria/epidemiología , Adolescente , Adulto , Estudios Transversales , Monitoreo Epidemiológico , Femenino , Humanos , Kenia/epidemiología , Persona de Mediana Edad , Embarazo , Prevalencia , Distribución Aleatoria , Topografía Médica , Adulto Joven
20.
Int J Health Geogr ; 15(1): 26, 2016 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-27473186

RESUMEN

BACKGROUND: With more than half of Africa's population expected to live in urban settlements by 2030, the burden of malaria among urban populations in Africa continues to rise with an increasing number of people at risk of infection. However, malaria intervention across Africa remains focused on rural, highly endemic communities with far fewer strategic policy directions for the control of malaria in rapidly growing African urban settlements. The complex and heterogeneous nature of urban malaria requires a better understanding of the spatial and temporal patterns of urban malaria risk in order to design effective urban malaria control programs. In this study, we use remotely sensed variables and other environmental covariates to examine the predictability of intra-urban variations of malaria infection risk across the rapidly growing city of Dar es Salaam, Tanzania between 2006 and 2014. METHODS: High resolution SPOT satellite imagery was used to identify urban environmental factors associated malaria prevalence in Dar es Salaam. Supervised classification with a random forest classifier was used to develop high resolution land cover classes that were combined with malaria parasite prevalence data to identify environmental factors that influence localized heterogeneity of malaria transmission and develop a high resolution predictive malaria risk map of Dar es Salaam. RESULTS: Results indicate that the risk of malaria infection varied across the city. The risk of infection increased away from the city centre with lower parasite prevalence predicted in administrative units in the city centre compared to administrative units in the peri-urban suburbs. The variation in malaria risk within Dar es Salaam was shown to be influenced by varying environmental factors. Higher malaria risks were associated with proximity to dense vegetation, inland water and wet/swampy areas while lower risk of infection was predicted in densely built-up areas. CONCLUSIONS: The predictive maps produced can serve as valuable resources for municipal councils aiming to shrink the extents of malaria across cities, target resources for vector control or intensify mosquito and disease surveillance. The semi-automated modelling process developed can be replicated in other urban areas to identify factors that influence heterogeneity in malaria risk patterns and detect vulnerable zones. There is a definite need to expand research into the unique epidemiology of malaria transmission in urban areas for focal elimination and sustained control agendas.


Asunto(s)
Ambiente , Mapeo Geográfico , Imágenes Satelitales/métodos , Población Urbana , Animales , Anopheles/crecimiento & desarrollo , Inteligencia Artificial , Humanos , Insectos Vectores/crecimiento & desarrollo , Larva , Malaria/epidemiología , Plasmodium falciparum/crecimiento & desarrollo , Prevalencia , Medición de Riesgo , Análisis Espacio-Temporal , Tanzanía/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA