Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Methods ; 19(4): 486-495, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379947

RESUMEN

The desire to understand how the brain generates and patterns behavior has driven rapid methodological innovation in tools to quantify natural animal behavior. While advances in deep learning and computer vision have enabled markerless pose estimation in individual animals, extending these to multiple animals presents unique challenges for studies of social behaviors or animals in their natural environments. Here we present Social LEAP Estimates Animal Poses (SLEAP), a machine learning system for multi-animal pose tracking. This system enables versatile workflows for data labeling, model training and inference on previously unseen data. SLEAP features an accessible graphical user interface, a standardized data model, a reproducible configuration system, over 30 model architectures, two approaches to part grouping and two approaches to identity tracking. We applied SLEAP to seven datasets across flies, bees, mice and gerbils to systematically evaluate each approach and architecture, and we compare it with other existing approaches. SLEAP achieves greater accuracy and speeds of more than 800 frames per second, with latencies of less than 3.5 ms at full 1,024 × 1,024 image resolution. This makes SLEAP usable for real-time applications, which we demonstrate by controlling the behavior of one animal on the basis of the tracking and detection of social interactions with another animal.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Animales , Conducta Animal , Cabeza , Aprendizaje Automático , Ratones , Conducta Social
3.
Brain Behav Immun ; 87: 218-228, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31751617

RESUMEN

Individuals living or working in moldy buildings complain of a variety of health problems including pain, fatigue, increased anxiety, depression, and cognitive deficits. The ability of mold to cause such symptoms is controversial since no published research has examined the effects of controlled mold exposure on brain function or proposed a plausible mechanism of action. Patient symptoms following mold exposure are indistinguishable from those caused by innate immune activation following bacterial or viral exposure. We tested the hypothesis that repeated, quantified doses of both toxic and nontoxic mold stimuli would cause innate immune activation with concomitant neural effects and cognitive, emotional, and behavioral symptoms. We intranasally administered either 1) intact, toxic Stachybotrys spores; 2) extracted, nontoxic Stachybotrys spores; or 3) saline vehicle to mice. As predicted, intact spores increased interleukin-1ß immunoreactivity in the hippocampus. Both spore types decreased neurogenesis and caused striking contextual memory deficits in young mice, while decreasing pain thresholds and enhancing auditory-cued memory in older mice. Nontoxic spores also increased anxiety-like behavior. Levels of hippocampal immune activation correlated with decreased neurogenesis, contextual memory deficits, and/or enhanced auditory-cued fear memory. Innate-immune activation may explain how both toxic mold and nontoxic mold skeletal elements caused cognitive and emotional dysfunction.


Asunto(s)
Hipocampo , Neurogénesis , Animales , Cognición , Inmunidad Innata , Trastornos de la Memoria , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA