Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sensors (Basel) ; 19(21)2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31652884

RESUMEN

Certain heavy metals present in wine, including copper, can form insoluble salts and can induce additional casse, so their determination is important for its quality and stability. In this context, a new biosensor for quantification of copper ions with BSA protein (bovine serum albumin) and using SPE electrodes (screen-printed electrodes) is proposed. The objective of this research was to develop a miniaturized, portable, and low-cost alternative to classical methods. A potentiostat, which displays the response in the form of a cyclic voltammogram, was used in order to carry out this method. Values measured for the performance characteristics of the new biosensor revealed a good sensitivity (21.01 µA mM-1cm-2), reproducibility (93.8%), and limit of detection (0.173 ppm), suggesting that it has a high degree of application in the analysis proposed by our research. The results obtained for wine samples were compared with the reference method, atomic absorption spectrometer (AAS), and it was indicated that the developed biosensor is efficient and can be used successfully in the analysis of copper in wine. For the 20 samples of red wine analyzed with AAS, the concentration range of copper was between 0.011 and 0.695 mg/L and with the developed biosensor it was between 0.037 and 0.658 mg/L. Similar results were obtained for the 20 samples of white wine, 0.121-0.765 mg/L (AAS) and 0.192-0.789 mg/L (developed biosensor), respectively.

2.
Molecules ; 24(16)2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31412647

RESUMEN

The aim of this study was to compare the physicochemical, the microbiological, and the antioxidant characteristics of unifloral honey, polyfloral honey, honeydew, and hay meadows honey. Hay meadow is type of semi-natural grassland with a great floral diversity, an important resource for pollinators. Grasslands are the source of the spring nectar honey obtained in May and June. Water content, sugars (fructose, glucose, sucrose, trehalose, melezitose, maltose, erlose, turanose, and raffinose), electrical conductivity, phenolic content (gallic acid, protocatechuic acid, 4-hydrxybenzoic acid, vanilic acid, chlorogenic acid, caffeic acid, p-coumaric acid, rosmarinic acid, myricetin, quercitin, luteolin, kaempferol), color, viscosity, and microbiological characteristics were performed for all samples of honey. The total polyphenols content was significant for grassland honey (21.50 mg/100 g) and honeydew (30.49 mg/100 g) and less significant for acacia (0.08 mg/100 g) and rape honey (0.14 mg/100 g). All samples were microbiologically safe, and standard plate count (SPC) values were <10 cfu/g for all the samples, but the grassland honey had the highest microbiological quality: 33.3% of samples without microorganisms, 50.0% with the presence of yeast under limit, and 16.7% with yeast and mold under limit, a situation that does not meet other types of honey. The results of statistical analysis obtained with principal component analysis (PCA) showed a major difference between the grassland honey and the other types of honey.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Fenómenos Químicos , Flores , Pradera , Miel/análisis , Conductividad Eléctrica , Pruebas de Sensibilidad Microbiana , Fenoles/análisis , Fenoles/química , Azúcares/análisis , Azúcares/química
3.
Micromachines (Basel) ; 14(8)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37630065

RESUMEN

Food is humans' main source of nickel intake, which is responsible for the prevalence of allergic contact dermatitis and other pathological afflictions. While robust, the classical methods for nickel detection-atomic absorption spectrometry and inductively coupled plasma mass spectrometry-are expensive and laborious; in contrast, modern methods that utilize sensors-of which most are electrochemical-have rapid run times, are cost-effective, and are easily assembled. Here, we describe the use of four biopolymers (alginate, agar, chitosan, and carrageenan) for receptor immobilization on biosensors to detect nickel ions and use an optimization approach with three biopolymer concentrations to assay analytical performance profiles. We measured the total performance of screen-printed carbon electrodes immobilized with the biopolymer-sensor combinations using cyclic voltammetry (CV). Voltammetric behavior favored the carrageenan biosensor, based on performance characteristics measured using CV, with sensitivities of 2.68 (for 1% biopolymer concentration) and 2.08 (for 0.5% biopolymer concentration). Our results indicated that among the four biopolymer combinations, carrageenan with urease affixed to screen-printed electrodes was effective at coupling for nickel detection.

4.
Gels ; 9(7)2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37504439

RESUMEN

For a long time, biopolymers have proven their effectiveness in the development of materials with various applications, lately those intended for the biomedical and pharmaceutical industries, due to their high biocompatibility and non-toxic, non-allergenic, and non-immunogenic nature. The ability to incorporate various active substances in this matrix has yielded materials with characteristics that are far superior to those of classic, conventional ones. The beneficial effects of consuming Moringa oleifera have promoted the use of this plant, from Ayurvedic to classical medicine. The addition of such compounds in the materials intended for the treatment of surface wounds may represent the future of the development of innovative dressings. This study followed the development of materials based on sodium alginate and moringa powder or essential oil for use as dressings, pads, or sheets. Thus, three materials with the addition of 10-30% moringa powder and three materials with the addition of 10-30% essential oil were obtained. The data were compared with those of the control sample, with sodium alginate and plasticizer. The microtopography indicated that the materials have a homogeneous matrix that allows them to incorporate and maintain natural compounds with prolonged release. For example, the sample with 30% moringa essential oil kept its initial shape and did not disintegrate, although the swelling ratio value reached 4800% after 20 min. After testing the mechanical properties, the same sample had the best tensile strength (TS = 0.248 MPa) and elongation (31.41%), which is important for the flexibility of the dressing. The same sample exhibited a very high antioxidant capacity (60.78% inhibition). The materials obtained with moringa powder added presented good values of physical and mechanical properties, which supports their use as wound dressings for short-term application and the release of embedded compounds. According to the obtained results, all the biopolymeric materials with moringa added can be used as dressings for different wound types.

5.
J Pers Med ; 12(8)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-36013244

RESUMEN

Beginning in December 2019, the world faced a critical new public health stressor with the emergence of SARS-CoV-2. Its spread was extraordinarily rapid, and in a matter of weeks countries across the world were affected, notably in their ability to manage health care needs. While many sectors of public structures were impacted by the pandemic, it particularly highlighted shortcomings in medical care infrastructures around the world that underscored the need to reorganize medical systems, as they were vastly unprepared and ill-equipped to manage a pandemic and simultaneously provide general and specialized medical care. This paper presents modalities in approaches to the pandemic by various countries, and the triaged reorganization of medical sections not considered first-line in the pandemic that was in many cases transformed into wards for treating COVID-19 cases. As new viruses and structural variants emerge, it is important to find solutions to streamline medical care in hospitals, which includes the expansion of digital network medicine (i.e., telemedicine and mobile health apps) for patients to continue to receive appropriate care without risking exposure to contagions. Mobile health app development continues to evolve with specialized diagnostics capabilities via external attachments that can provide rapid information sharing between patients and care providers while eliminating the need for office visits. Telemedicine, still in the early stages of adoption, especially in the developing world, can ensure access to medical information and contact with care providers, with the potential to release emergency rooms from excessive cases, and offer multidisciplinary access for patients and care providers that can also be a means to avoid contact during a pandemic. As this pandemic illustrated, an overhaul to streamline health care is essential, and a move towards greater use of mobile health and telemedicine will greatly benefit public health to control the spread of new variants and future outbreaks.

6.
Polymers (Basel) ; 13(16)2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34451268

RESUMEN

Research regarding the use of biopolymers has been of great interest to scientists, the medical community, and the industry especially in recent years. Initially used for food applications, the special properties extended their use to the pharmaceutical and medical industries. The practical applications of natural drug encapsulation materials have emerged as a result of the benefits of the use of biopolymers as edible coatings and films in the food industry. This review highlights the use of polysaccharides in the pharmaceutical industries and as encapsulation materials for controlled drug delivery systems including probiotics, focusing on their development, various applications, and benefits. The paper provides evidence in support of research studying the use of biopolymers in the development of new drug delivery systems, explores the challenges and limitations in integrating polymer-derived materials with product delivery optimization, and examines the host biological/metabolic parameters that can be used in the development of new applications.

7.
Biosensors (Basel) ; 11(12)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34940276

RESUMEN

Nickel is naturally present in drinking water and many dietary items, which expose the general population to nickel ingestion. This heavy metal can have a variety of harmful health effects, causing allergies and skin disorders (i.e., dermatitis), lung, cardiovascular, and kidney diseases, and even certain cancers; therefore, nickel detection is important for public health. Recent innovations in the development of biosensors have demonstrated they offer a powerful new approach over conventional analytical techniques for the identification and quantification of user-defined compounds, including heavy metals such as nickel. We optimized five candidate nickel-biosensing receptors, and tested each for efficiency of binding to immobilization elements on screen-printed electrodes (SPEs). We characterized the application of nickel-detecting biosensors with four different cultivated vegetables. We analyzed the efficiency of each nickel-detecting biosensor by potentiostat and atomic absorption spectrometry and compared the results from the sample analytes. We then analyzed the performance characteristics and responses of assembled biosensors, and show they are very effective at measuring nickel ions in food, especially with the urease-alginate biosensor affixed to silver SPEs, measured by cyclic voltammetry (sensitivity-2.1921 µA Mm-1 cm-2 and LOD-0.005 mg/L). Given the many advantages of biosensors, we describe an optimization pipeline approach to the application of different nickel-binding biosensors for public health, nutrition, and consumer safety, which are very promising.


Asunto(s)
Técnicas Biosensibles , Análisis de los Alimentos , Contaminación de Alimentos , Metales Pesados , Alérgenos , Técnicas Electroquímicas , Electrodos , Humanos , Iones , Metales Pesados/análisis , Níquel/análisis
8.
Foods ; 10(12)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34945586

RESUMEN

Currently, the problem of pollution due to plastic waste is a major one. The food industry, and especially that of meat and meat products, is intensely polluting, both due to the raw materials used and also to the packaging materials. The aim of the present study was to develop, test, and characterize the biopolymeric materials with applications in the meat industry. To obtain natural materials which are completely edible and biodegradable, different compositions of agar, sodium alginate, water and glycerol were used, thus obtaining 15 films. The films were tested to identify physical properties such as smell, taste, film uniformity and regularity of edges, microstructure, color, transmittance, and opacity. These determinations were supplemented by the evaluation of mechanical properties and solubility. According to the results obtained and the statistical interpretations, three films with the best results were used for packing the slices of dried raw salami. The salami was tested periodically for three months of maintenance in refrigeration conditions, and the results indicate the possibility of substituting conventional materials with the biopolymer ones obtained in the study.

9.
Nutrients ; 13(10)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34684615

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to an excess in community mortality across the globe. We review recent evidence on the clinical pathology of COVID-19, comorbidity factors, immune response to SARS-CoV-2 infection, and factors influencing infection outcomes. The latter specifically includes diet and lifestyle factors during pandemic restrictions. We also cover the possibility of SARS-CoV-2 transmission through food products and the food chain, as well as virus persistence on different surfaces and in different environmental conditions, which were major public concerns during the initial days of the pandemic, but have since waned in public attention. We discuss useful measures to avoid the risk of SARS-CoV-2 spread through food, and approaches that may reduce the risk of contamination with the highly contagious virus. While hygienic protocols are required in food supply sectors, cleaning, disinfection, avoidance of cross-contamination across food categories, and foodstuffs at different stages of the manufacturing process are still particularly relevant because the virus persists at length on inert materials such as food packaging. Moreover, personal hygiene (frequent washing and disinfection), wearing gloves, and proper use of masks, clothes, and footwear dedicated to maintaining hygiene, provide on-site protections for food sector employees as well as supply chain intermediates and consumers. Finally, we emphasize the importance of following a healthy diet and maintaining a lifestyle that promotes physical well-being and supports healthy immune system function, especially when government movement restrictions ("lockdowns") are implemented.


Asunto(s)
COVID-19/inmunología , COVID-19/patología , Dieta/métodos , Internacionalidad , Evaluación de Resultado en la Atención de Salud/métodos , Evaluación de Resultado en la Atención de Salud/estadística & datos numéricos , COVID-19/prevención & control , China , Europa (Continente) , Humanos , Pandemias , SARS-CoV-2 , Estados Unidos
10.
Foods ; 9(5)2020 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-32370262

RESUMEN

Nowadays, biopolymer films have gained notoriety among the packaging materials. Some studies clearly test their effectiveness for certain periods of time, with applicability in the food industry. This research has been carried out in two directions. Firstly, the development and testing of the new edible material: general appearance, thickness, retraction ratio, color, transmittance, microstructure, roughness, and porosity, as well as mechanical and solubility tests. Secondly, testing of the packaged products-slices of cheese and prosciutto-in the new material and their maintenance at refrigeration conditions for 5 months; thus, the peroxide index, color, and water activity index were evaluated for the packaged products. The results emphasize that the packaging is a lipophilic one and does not allow wetting or any changes in the food moisture. The results indicate the stability of the parameters within three months and present the changes occurring within the fourth and fifth months. Microbiological tests indicated an initial microbial growth, both for cheese slices and ham slices. Time testing indicated a small increase in the total count number over the 5-month period: 23 cfu/g were found of fresh slices of prosciutto and 27 cfu/g in the case of the packaged ones; for slices of cheese, the total count of microorganisms indicated 7 cfu/g in the initial stage and 11 cfu/g after 5 months. The results indicate that the film did not facilitate the growth of the existing microorganisms, and highlight the need to purchase food from safe places, especially in the case of raw-dried products that have not undergone heat treatment, which may endanger the health of the consumer. The new material tested represents a promising substitute for commercial and unsustainable plastic packaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA