Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Malar J ; 20(1): 170, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33781254

RESUMEN

BACKGROUND: Population suppression gene drive has been proposed as a strategy for malaria vector control. A CRISPR-Cas9-based transgene homing at the doublesex locus (dsxFCRISPRh) has recently been shown to increase rapidly in frequency in, and suppress, caged laboratory populations of the malaria mosquito vector Anopheles gambiae. Here, problem formulation, an initial step in environmental risk assessment (ERA), was performed for simulated field releases of the dsxFCRISPRh transgene in West Africa. METHODS: Building on consultative workshops in Africa that previously identified relevant environmental and health protection goals for ERA of gene drive in malaria vector control, 8 potentially harmful effects from these simulated releases were identified. These were stratified into 46 plausible pathways describing the causal chain of events that would be required for potential harms to occur. Risk hypotheses to interrogate critical steps in each pathway, and an analysis plan involving experiments, modelling and literature review to test each of those risk hypotheses, were developed. RESULTS: Most potential harms involved increased human (n = 13) or animal (n = 13) disease transmission, emphasizing the importance to subsequent stages of ERA of data on vectorial capacity comparing transgenics to non-transgenics. Although some of the pathways (n = 14) were based on known anatomical alterations in dsxFCRISPRh homozygotes, many could also be applicable to field releases of a range of other transgenic strains of mosquito (n = 18). In addition to population suppression of target organisms being an accepted outcome for existing vector control programmes, these investigations also revealed that the efficacy of population suppression caused by the dsxFCRISPRh transgene should itself directly affect most pathways (n = 35). CONCLUSIONS: Modelling will play an essential role in subsequent stages of ERA by clarifying the dynamics of this relationship between population suppression and reduction in exposure to specific potential harms. This analysis represents a comprehensive identification of plausible pathways to potential harm using problem formulation for a specific gene drive transgene and organism, and a transparent communication tool that could inform future regulatory studies, guide subsequent stages of ERA, and stimulate further, broader engagement on the use of population suppression gene drive to control malaria vectors in West Africa.


Asunto(s)
Anopheles/genética , Tecnología de Genética Dirigida , Malaria/prevención & control , Control de Mosquitos/instrumentación , Mosquitos Vectores/genética , África Occidental/epidemiología , Animales , Animales Modificados Genéticamente/genética , Transgenes
2.
BMC Biol ; 18(1): 98, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32782000

RESUMEN

BACKGROUND: Gene drives based on CRISPR-Cas9 technology are increasingly being considered as tools for reducing the capacity of mosquito populations to transmit malaria, and one of the most promising options is driving endonuclease genes that reduce the fertility of female mosquitoes. In particular, there is much interest in constructs that target the conserved mosquito doublesex (dsx) gene such that the emergence of functional drive-resistant alleles is unlikely. Proof of principle that these constructs can lead to substantial population suppression has been obtained in population cages, and they are being evaluated for use in sub-Saharan Africa. Here, we use simulation modelling to understand the factors affecting the spread of this type of gene drive over a one million-square kilometre area of West Africa containing substantial environmental and social heterogeneity. RESULTS: We found that a driving endonuclease gene targeting female fertility could lead to substantial reductions in malaria vector populations on a regional scale. The exact level of suppression is influenced by additional fitness costs of the transgene such as the somatic expression of Cas9, and its deposition in sperm or eggs leading to damage to the zygote. In the absence of these costs, or of emergent drive-resistant alleles that restore female fertility, population suppression across the study area is predicted to stabilise at ~ 95% 4 years after releases commence. Small additional fitness costs do not greatly affect levels of suppression, though if the fertility of females whose offspring transmit the construct drops by more than ~ 40%, then population suppression is much less efficient. We show the suppression potential of a drive allele with high fitness costs can be enhanced by engineering it also to express male bias in the progeny of transgenic males. Irrespective of the strength of the drive allele, the spatial model predicts somewhat less suppression than equivalent non-spatial models, in particular in highly seasonal regions where dry season stochasticity reduces drive efficiency. We explored the robustness of these results to uncertainties in mosquito ecology, in particular their method of surviving the dry season and their dispersal rates. CONCLUSIONS: The modelling presented here indicates that considerable suppression of vector populations can be achieved within a few years of using a female sterility gene drive, though the impact is likely to be heterogeneous in space and time.


Asunto(s)
Sistemas CRISPR-Cas , Culicidae/genética , Endonucleasas/química , Tecnología de Genética Dirigida , Malaria/prevención & control , Control de Mosquitos/métodos , Mosquitos Vectores/genética , África Occidental , Animales , Animales Modificados Genéticamente/genética , Culicidae/enzimología , Femenino , Fertilidad/genética , Marcación de Gen , Proteínas de Insectos/química , Modelos Genéticos
3.
PLoS Genet ; 13(10): e1007039, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28976972

RESUMEN

Gene drives have enormous potential for the control of insect populations of medical and agricultural relevance. By preferentially biasing their own inheritance, gene drives can rapidly introduce genetic traits even if these confer a negative fitness effect on the population. We have recently developed gene drives based on CRISPR nuclease constructs that are designed to disrupt key genes essential for female fertility in the malaria mosquito. The construct copies itself and the associated genetic disruption from one homologous chromosome to another during gamete formation, a process called homing that ensures the majority of offspring inherit the drive. Such drives have the potential to cause long-lasting, sustainable population suppression, though they are also expected to impose a large selection pressure for resistance in the mosquito. One of these population suppression gene drives showed rapid invasion of a caged population over 4 generations, establishing proof of principle for this technology. In order to assess the potential for the emergence of resistance to the gene drive in this population we allowed it to run for 25 generations and monitored the frequency of the gene drive over time. Following the initial increase of the gene drive we observed a gradual decrease in its frequency that was accompanied by the spread of small, nuclease-induced mutations at the target gene that are resistant to further cleavage and restore its functionality. Such mutations showed rates of increase consistent with positive selection in the face of the gene drive. Our findings represent the first documented example of selection for resistance to a synthetic gene drive and lead to important design recommendations and considerations in order to mitigate for resistance in future gene drive applications.


Asunto(s)
Anopheles/genética , Genes Esenciales , Genética de Población , Selección Genética , Alelos , Secuencia de Aminoácidos , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Femenino , Fertilidad/genética , Frecuencia de los Genes , Biblioteca de Genes , Ingeniería Genética , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Insectos Vectores/genética , Malaria/prevención & control , Masculino , Modelos Genéticos , Control de Mosquitos/métodos , Mutación , Análisis de Secuencia de ARN
4.
BMC Biol ; 17(1): 26, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30922310

RESUMEN

BACKGROUND: The persistence of malaria in large parts of sub-Saharan Africa has motivated the development of novel tools to complement existing control programmes, including gene-drive technologies to modify mosquito vector populations. Here, we use a stochastic simulation model to explore the potential of using a driving-Y chromosome to suppress vector populations in a 106 km2 area of West Africa including all of Burkina Faso. RESULTS: The consequence of driving-Y introductions is predicted to vary across the landscape, causing elimination of the target species in some regions and suppression in others. We explore how this variation is determined by environmental conditions, mosquito behaviour, and the properties of the gene-drive. Seasonality is particularly important, and we find population elimination is more likely in regions with mild dry seasons whereas suppression is more likely in regions with strong seasonality. CONCLUSIONS: Despite the spatial heterogeneity, we suggest that repeated introductions of modified mosquitoes over a few years into a small fraction of human settlements may be sufficient to substantially reduce the overall number of mosquitoes across the entire geographic area.


Asunto(s)
Anopheles/genética , Malaria/prevención & control , Control de Mosquitos/métodos , Mosquitos Vectores/genética , Animales , Burkina Faso , Modelos Genéticos , Control Biológico de Vectores/métodos , Estaciones del Año
5.
Malar J ; 18(1): 113, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940141

RESUMEN

BACKGROUND: In the context of widespread mosquito resistance to currently available pesticides, novel, precise genetic vector control methods aimed at population suppression or trait replacement are a potentially powerful approach that could complement existing malaria elimination interventions. Such methods require knowledge of vector population composition, dynamics, behaviour and role in transmission. Here were characterized these parameters in three representative villages, Bana, Pala and Souroukoudingan, of the Sudano-Sahelian belt of Burkina Faso, a region where bed net campaigns have recently intensified. METHODS: From July 2012 to November 2015, adult mosquitoes were collected monthly using pyrethroid spray catches (PSC) and human landing catches (HLC) in each village. Larval habitat prospections assessed breeding sites abundance at each site. Mosquitoes collected by PSC were identified morphologically, and then by molecular technique to species where required, to reveal the seasonal dynamics of local vectors. Monthly entomological inoculation rates (EIR) that reflect malaria transmission dynamics were estimated by combining the HLC data with mosquito sporozoite infection rates (SIR) identified through ELISA-CSP. Finally, population and EIR fluctuations were fit to locally-collected rainfall data to highlight the strong seasonal determinants of mosquito abundance and malaria transmission in this region. RESULTS: The principal malaria vectors found were in the Anopheles gambiae complex. Mosquito abundance peaked during the rainy season, but there was variation in vector species composition between villages. Mean survey HLC and SIR were similar across villages and ranged from 18 to 48 mosquitoes/person/night and from 3.1 to 6.6% prevalence. The resulting monthly EIRs were extremely high during the rainy season (0.91-2.35 infectious bites/person/day) but decreased substantially in the dry season (0.03-0.22). Vector and malaria transmission dynamics generally tracked seasonal rainfall variations, and the highest mosquito abundances and EIRs occurred in the rainy season. However, despite low residual mosquito populations, mosquitoes infected with malaria parasites remained present in the dry season. CONCLUSION: These results highlight the important vector control challenge facing countries with high EIR despite the recent campaigns of bed net distribution. As demonstrated in these villages, malaria transmission is sustained for large parts of the year by a very high vector abundance and high sporozoite prevalence, resulting in seasonal patterns of hyper and hypo-endemicity. There is, therefore, an urgent need for additional vector control tools that can target endo and exophillic mosquito populations.


Asunto(s)
Anopheles/crecimiento & desarrollo , Transmisión de Enfermedad Infecciosa , Malaria/epidemiología , Malaria/transmisión , Mosquitos Vectores/crecimiento & desarrollo , Estaciones del Año , Adulto , Animales , Burkina Faso/epidemiología , Clima , Humanos , Estudios Longitudinales , Dinámica Poblacional , Prevalencia , Población Rural
6.
Malar J ; 17(1): 140, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29609598

RESUMEN

BACKGROUND: Populations of the Anopheles gambiae complex are found during the rainy season throughout West Africa, even in arid areas with long dry seasons during which mosquitoes appear to be absent. Several hypotheses have been proposed to explain this apparent paradox, including aestivation, dispersal between neighbouring settlements, and long distance migration using high-altitude wind currents. METHODS: An individual-based, spatially explicit model of mosquito populations was developed for a region of West Africa centred on, and including all of, Burkina Faso. Populations associated with human settlements were linked by dispersal and the model incorporated geospatial data on the distribution of settlements, water bodies and rainfall. RESULTS: Local dispersal (at rates consistent with experimental data) was necessary to explain observed patterns of rainy season populations across all of the simulation area, but by itself failed to account for the presence of populations in the arid North (the Sahel). The presence of rare dry-season larval sites could explain these northern populations, but seems inconsistent with field surveys. Aestivation by female mosquitoes explained rainy-season populations in all but the very sparsest and driest areas of human habitation, while long-distance migration based on annual wind patterns could account for all observed populations. CONCLUSIONS: Modelling studies such as this can help assess the potential validity of different hypotheses and suggest priority areas for experimental study. In particular, the results highlight a shortage of empirical research on mosquito dispersal between neighbouring settlements, which may be critically important to the continued presence of many mosquito populations in West Africa. Further research that establishes the extent to which mosquitoes aestivate, and migrate using high altitude winds, is also much needed to understand Sahelian mosquito populations.


Asunto(s)
Anopheles/fisiología , Malaria/transmisión , Modelos Biológicos , Mosquitos Vectores/fisiología , Migración Animal/fisiología , Animales , Burkina Faso , Estivación/fisiología , Femenino , Masculino
7.
Malar J ; 17(1): 154, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618367

RESUMEN

BACKGROUND: The use of gene drive systems to manipulate populations of malaria vectors is currently being investigated as a method of malaria control. One potential system uses driving endonuclease genes (DEGs) to spread genes that impose a genetic load. Previously, models have shown that the introduction of DEG-bearing mosquitoes could suppress or even extinguish vector populations in spatially-heterogeneous environments which were constant over time. In this study, a stochastic spatially-explicit model of mosquito ecology is combined with a rainfall model which enables the generation of a variety of daily precipitation patterns. The model is then used to investigate how releases of a DEG that cause a bias in population sex ratios towards males are affected by seasonal or random rainfall patterns. The parameters of the rainfall model are then fitted using data from Bamako, Mali, and Mbita, Kenya, to evaluate release strategies in similar climatic conditions. RESULTS: In landscapes with abundant resources and large mosquito populations the spread of a DEG is reliable, irrespective of variability in rainfall. This study thus focuses mainly on landscapes with low density mosquito populations where the spread of a DEG may be sensitive to variation in rainfall. It is found that an introduced DEG will spread into its target population more reliably in wet conditions, yet an established DEG will have more impact in dry conditions. In strongly seasonal environments, it is thus preferable to release DEGs at the onset of a wet season to maximize their spread before the following dry season. If the variability in rainfall has a substantial random component, there is a net increase in the probability that a DEG release will lead to population extinction, due to the increased impact of a DEG which manages to establish in these conditions. For Bamako, where annual rainfall patterns are characterized by a long dry season, it is optimal to release a DEG at the start of the wet season, where the population is growing fastest. By contrast release timing is of lower importance for the less seasonal Mbita. CONCLUSION: This analysis suggests that DEG based methods of malaria vector control can be effective in a wide range of climates. In environments with substantial temporal variation in rainfall, careful timing of releases which accounts for the temporal variation in population density can substantially improve the probability of mosquito suppression or extinction.


Asunto(s)
Anopheles/genética , Endonucleasas/genética , Control de Insectos/métodos , Proteínas de Insectos/genética , Mosquitos Vectores/genética , Animales , Femenino , Kenia , Malaria/prevención & control , Masculino , Malí , Modelos Genéticos , Densidad de Población , Estaciones del Año
8.
BMC Biol ; 15(1): 81, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28893259

RESUMEN

Driving endonuclease genes (DEGs) spread through a population by a non-Mendelian mechanism. In a heterozygote, the protein encoded by a DEG causes a double-strand break in the homologous chromosome opposite to where its gene is inserted and when the break is repaired using the homologue as a template the DEG heterozygote is converted to a homozygote. Some DEGs occur naturally while several classes of endonucleases can be engineered to spread in this way, with CRISPR-Cas9 based systems being particularly flexible. There is great interest in using driving endonuclease genes to impose a genetic load on insects that vector diseases or are economic pests to reduce their population density, or to introduce a beneficial gene such as one that might interrupt disease transmission. This paper reviews both the population genetics and population dynamics of DEGs. It summarises the theory that guides the design of DEG constructs intended to perform different functions. It also reviews the studies that have explored the likelihood of resistance to DEG phenotypes arising, and how this risk may be reduced. The review is intended for a general audience and mathematical details are kept to a minimum.


Asunto(s)
Sistemas CRISPR-Cas/genética , Control de Enfermedades Transmisibles/métodos , Vectores de Enfermedades , Endonucleasas/genética , Marcación de Gen/métodos , Control de Plagas/métodos , Animales
9.
J Theor Biol ; 418: 57-65, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28130098

RESUMEN

The establishment and spread of a disease within a metapopulation is influenced both by dynamics within each population and by the host and pathogen spatial processes through which they are connected. We develop a spatially explicit metapopulation model to investigate how the form of host and disease dispersal jointly influence the probability of disease establishment and invasion. We show that diseases are more likely to establish if both the host and the disease tend to disperse locally, since the former leads to the spatial aggregation of host populations in the environment while the latter facilitates the pathogen's exploitation of this spatial pattern. In contrast, local pathogen dispersal is likely to reduce the probability of subsequent disease spread because it increases the spatial segregation of infected and uninfected populations. The effects of local dispersal on disease dynamics are less pronounced when the pathogen spreads through the movement of infected hosts and more pronounced when pathogen dispersal is independent (for example through airborne viruses) though the details of host and pathogen biology can be important. These spatial effects tend to be more pronounced if the sites available for host occupation are themselves spatially aggregated.


Asunto(s)
Enfermedades Transmisibles/epidemiología , Enfermedades Transmisibles/transmisión , Modelos Biológicos , Dinámica Poblacional , Animales , Humanos
10.
Nat Commun ; 13(1): 796, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145082

RESUMEN

Every year, malaria kills approximately 405,000 people in Sub-Saharan Africa, most of them children under the age of five years. In many countries, progress in malaria control has been threatened by the rapid spread of resistance to antimalarial drugs and insecticides. Novel genetic mosquito control approaches could play an important role in future integrated malaria control strategies. In July 2019, the Target Malaria consortium proceeded with the first release of hemizygous genetically-modified (GM) sterile and non-transgenic sibling males of the malaria mosquito Anopheles coluzzii in Burkina Faso. This study aimed to determine the potential fitness cost associated to the transgene and gather important information related to the dynamic of transgene-carrying mosquitoes, crucial for next development steps. Bayesian estimations confirmed that GM males had lower survival and were less mobile than their wild type (WT) siblings. The estimated male population size in Bana village, at the time of the release was 28,000 - 37,000. These results provide unique information about the fitness and behaviour of released GM males that will inform future releases of more effective strains of the A. gambiae complex.


Asunto(s)
Anopheles/genética , Infertilidad , Malaria/transmisión , Mosquitos Vectores/genética , Animales , Teorema de Bayes , Burkina Faso , Insecticidas , Masculino , Control de Mosquitos/métodos , Densidad de Población
11.
Nat Commun ; 12(1): 4589, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321476

RESUMEN

CRISPR-based gene-drives targeting the gene doublesex in the malaria vector Anopheles gambiae effectively suppressed the reproductive capability of mosquito populations reared in small laboratory cages. To bridge the gap between laboratory and the field, this gene-drive technology must be challenged with vector ecology.Here we report the suppressive activity of the gene-drive in age-structured An. gambiae populations in large indoor cages that permit complex feeding and reproductive behaviours.The gene-drive element spreads rapidly through the populations, fully supresses the population within one year and without selecting for resistance to the gene drive. Approximate Bayesian computation allowed retrospective inference of life-history parameters from the large cages and a more accurate prediction of gene-drive behaviour under more ecologically-relevant settings.Generating data to bridge laboratory and field studies for invasive technologies is challenging. Our study represents a paradigm for the stepwise and sound development of vector control tools based on gene-drive.


Asunto(s)
Anopheles/genética , Tecnología de Genética Dirigida , Mosquitos Vectores/genética , Animales , Animales Modificados Genéticamente , Teorema de Bayes , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Vivienda para Animales , Malaria/transmisión , Control de Mosquitos , Estudios Retrospectivos
12.
Parasit Vectors ; 13(1): 516, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33059722

RESUMEN

BACKGROUND: One of the promising current approaches to curb malaria lies in genetic vector control, the implementation of which will require an improved understanding of the movement of genetic constructs among mosquito populations. To predict potential gene flow from one area to another, it is important to begin to understand mosquito dynamics outside of the commonly-sampled village areas, and thus how genes may move between villages. This study assessed the presence and relative abundance of mosquitoes in a 6-km corridor between two villages in western Burkina Faso. METHODS: The area surrounding the villages was mapped and the road between them was used as the basis of a transect along which to sample. Five collection points were placed along this transect. To investigate both larval and adult mosquito presence, multiple sampling approaches were used surrounding each point: searching for larval sites in an area of 500 m radius, swarm sampling, human landing catches (HLC), CDC light traps and backpack aspiration catches of potential resting sites. Sampling took place twice: in September and October 2015. RESULTS: Adult mosquitoes from six species of Anopheles and three other genera were found along the whole transect. Anopheles gambiae (s.l.) was the most abundant followed by Anopheles nili and Anopheles coustani. Larvae of Anopheles spp. were found in small pools of surface water along the whole transect, though their presence increased with human proximity. HLC and aspiration were the most efficient methods of collecting adult mosquitoes along the whole transect, indicating that there are both host-seeking and resting mosquitoes well away from core village areas. In contrast, swarms of male mosquitoes, thought to be the principle mating locations of Anopheles spp. mosquitoes in West Africa, were only found close to the core village areas. CONCLUSIONS: This preliminary study indicates that Anopheles spp. mosquitoes are both present and breeding in low human-density areas along transit axes and provides both a relative evaluation of methods for use in these areas and evidence that gene flow between Sahelian population centres is likely. More robust and structured studies are nevertheless needed to come with stronger conclusions.


Asunto(s)
Anopheles , Manejo de Especímenes/métodos , Animales , Anopheles/clasificación , Anopheles/crecimiento & desarrollo , Burkina Faso , Vectores de Enfermedades , Larva , Malaria/transmisión , Control de Mosquitos/métodos , Mosquitos Vectores , Densidad de Población , Dinámica Poblacional
13.
J Appl Ecol ; 57(10): 2086-2096, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33149368

RESUMEN

The development of genetically modified (GM) mosquitoes and their subsequent field release offers innovative and cost-effective approaches to reduce mosquito-borne diseases, such as malaria. A sex-distorting autosomal transgene has been developed recently in G3 mosquitoes, a laboratory strain of the malaria vector Anopheles gambiae s.l. The transgene expresses an endonuclease called I-PpoI during spermatogenesis, which selectively cleaves the X chromosome to result in ~95% male progeny. Following the World Health Organization guidance framework for the testing of GM mosquitoes, we assessed the dynamics of this transgene in large cages using a joint experimental modelling approach.We performed a 4-month experiment in large, indoor cages to study the population genetics of the transgene. The cages were set up to mimic a simple tropical environment with a diurnal light-cycle, constant temperature and constant humidity. We allowed the generations to overlap to engender a stable age structure in the populations. We constructed a model to mimic the experiments, and used the experimental data to infer the key model parameters.We identified two fitness costs associated with the transgene. First, transgenic adult males have reduced fertility and, second, their female progeny have reduced pupal survival rates. Our results demonstrate that the transgene is likely to disappear in <3 years under our confined conditions. Model predictions suggest this will be true over a wide range of background population sizes and transgene introduction rates. Synthesis and applications. Our study is in line with the World Health Organization guidance recommendations in regard to the development and testing of GM mosquitoes. Since the transgenic sex ratio distorter strain (Ag(PMB)1) has been considered for genetic vector control of malaria, we recorded the dynamics of this transgene in indoor-large cage populations and modelled its post-release persistence under different scenarios. We provide a demonstration of the self-limiting nature of the transgene, and identified new fitness costs that will further reduce the longevity of the transgene after its release. Finally, our study has showcased an alternative and effective statistical method for characterizing the phenotypic expression of a transgene in an insect pest population.

14.
Parasit Vectors ; 12(1): 70, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30728060

RESUMEN

BACKGROUND: Novel transgenic mosquito control methods require progressively more realistic evaluation. The goal of this study was to determine the effect of a transgene that causes a male-bias sex ratio on Anopheles gambiae target populations in large insectary cages. METHODS: Life history characteristics of Anopheles gambiae wild type and Ag(PMB)1 (aka gfp124L-2) transgenic mosquitoes, whose progeny are 95% male, were measured in order to parameterize predictive population models. Ag(PMB)1 males were then introduced at two ratios into large insectary cages containing target wild type populations with stable age distributions and densities. The predicted proportion of females and those observed in the large cages were compared. A related model was then used to predict effects of male releases on wild mosquitoes in a west African village. RESULTS: The frequency of transgenic mosquitoes in target populations reached an average of 0.44 ± 0.02 and 0.56 ± 0.02 after 6 weeks in the 1:1 and in the 3:1 release ratio treatments (transgenic male:wild male) respectively. Transgenic males caused sex-ratio distortion of 73% and 80% males in the 1:1 and 3:1 treatments, respectively. The number of eggs laid in the transgenic treatments declined as the experiment progressed, with a steeper decline in the 3:1 than in the 1:1 releases. The results of the experiment are partially consistent with predictions of the model; effect size and variability did not conform to the model in two out of three trials, effect size was over-estimated by the model and variability was greater than anticipated, possibly because of sampling effects in restocking. The model estimating the effects of hypothetical releases on the mosquito population of a West African village demonstrated that releases could significantly reduce the number of females in the wild population. The interval of releases is not expected to have a strong effect. CONCLUSIONS: The biological data produced to parameterize the model, the model itself, and the results of the experiments are components of a system to evaluate and predict the performance of transgenic mosquitoes. Together these suggest that the Ag(PMB)1 strain has the potential to be useful for reversible population suppression while this novel field develops.


Asunto(s)
Anopheles/genética , Control de Mosquitos/métodos , Mosquitos Vectores/genética , Razón de Masculinidad , Transgenes , África Occidental , Animales , Animales Modificados Genéticamente , Femenino , Modelos Lineales , Malaria/epidemiología , Malaria/parasitología , Malaria/prevención & control , Masculino
15.
Parasit Vectors ; 10(1): 376, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28784147

RESUMEN

BACKGROUND: Vector control is a major component of the malaria control strategy. The increasing spread of insecticide resistance has encouraged the development of new tools such as genetic control which use releases of modified male mosquitoes. The use of male mosquitoes as part of a control strategy requires an improved understanding of male mosquito biology, including the factors influencing their survival and dispersal, as well as the ability to accurately estimate the size of a target mosquito population. This study was designed to determine the seasonal variation in population size via repeated mark-release-recapture experiments and to estimate the survival and dispersal of male mosquitoes of the Anopheles gambiae complex in a small west African village. METHODS: Mark-release-recapture experiments were carried out in Bana Village over two consecutive years, during the wet and the dry seasons. For each experiment, around 5000 (3407-5273) adult male Anopheles coluzzii mosquitoes were marked using three different colour dye powders (red, blue and green) and released in three different locations in the village (centre, edge and outside). Mosquitoes were recaptured at sites spread over the village for seven consecutive days following the releases. Three different capture methods were used: clay pots, pyrethroid spray catches and swarm sampling. RESULTS: Swarm sampling was the most productive method for recapturing male mosquitoes in the field. Population size and survival were estimated by Bayesian analyses of the Fisher-Ford model, revealing an about 10-fold increase in population size estimates between the end of dry season (10,000-50,000) to the wet season (100,000-500,000). There were no detectable seasonal effects on mosquito survival, suggesting that factors other than weather may play an important role. Mosquito dispersal ranged from 40 to 549 m over the seven days of each study and was not influenced by the season, but mainly by the release location, which explained more than 44% of the variance in net dispersal distance. CONCLUSION: This study clearly shows that male-based MRR experiments can be used to estimate some parameters of wild male populations such as population size, survival, and dispersal and to estimate the spatial patterns of movement in a given locality.


Asunto(s)
Distribución Animal , Anopheles/genética , Anopheles/fisiología , Mosquitos Vectores/fisiología , África Occidental/epidemiología , Animales , Anopheles/parasitología , Teorema de Bayes , Control de Enfermedades Transmisibles , Pradera , Humedad , Resistencia a los Insecticidas , Malaria/epidemiología , Malaria/prevención & control , Malaria/transmisión , Masculino , Mosquitos Vectores/genética , Mosquitos Vectores/parasitología , Densidad de Población , Estaciones del Año , Factores Sexuales
16.
Insects ; 7(4)2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27669312

RESUMEN

The persistence of transgenes in the environment is a consideration in risk assessments of transgenic organisms. Combining mathematical models that predict the frequency of transgenes and experimental demonstrations can validate the model predictions, or can detect significant biological deviations that were neither apparent nor included as model parameters. In order to assess the correlation between predictions and observations, models were constructed to estimate the frequency of a transgene causing male sexual sterility in simulated populations of a malaria mosquito Anopheles gambiae that were seeded with transgenic females at various proportions. Concurrently, overlapping-generation laboratory populations similar to those being modeled were initialized with various starting transgene proportions, and the subsequent proportions of transgenic individuals in populations were determined weekly until the transgene disappeared. The specific transgene being tested contained a homing endonuclease gene expressed in testes, I-PpoI, that cleaves the ribosomal DNA and results in complete male sexual sterility with no effect on female fertility. The transgene was observed to disappear more rapidly than the model predicted in all cases. The period before ovipositions that contained no transgenic progeny ranged from as little as three weeks after cage initiation to as long as 11 weeks.

17.
J Appl Ecol ; 50(5): 1216-1225, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25558082

RESUMEN

SUMMARY: Homing endonuclease genes (HEGs) exist naturally in many single-celled organisms and can show extremely strong genetic drive allowing them to spread through populations into which they are introduced. They are being investigated as tools to manipulate the populations of important vectors of human disease, in particular the mosquitoes that transmit malaria. Before HEGs can be deployed, it is important to study their spatial spread in order to design efficient release strategies.A spatially explicit model is developed to study the spread of a HEG through a landscape whose structure is defined by the distribution of mosquito breeding and feeding sites. The model is motivated by the biology of the major vectors of malaria in Africa. The conditions for spread, fixation and loss of two major types of HEG are explored in different landscapes.In landscapes where mosquito resources are abundant, the conditions for spread are well approximated by a mean-field model. Where a HEG imposes a genetic load, it can cause population extinction, though spatial models more often predict population suppression.In certain types of landscapes where mosquito resources are rare, an introduced HEG may be prevented from moving between local mosquito populations and so a simple release strategy is unlikely to be effective, yet if the HEG succeeds in spreading population extinction is a feasible outcome. Increasing the number of release sites at the expense of releasing fewer mosquitoes per site reduces the probability that a HEG will fail.Synthesis and applications. The model presented asks for the first time how the spatial structure of mosquito populations will influence the effectiveness of a technology that is being rapidly developed for vector control. If homing endonuclease genes (HEGs) are to be used in this way, we have qualified the importance of accounting for landscape characteristics in both the execution and the expectation of their application. The next stage is to use the model to study the spread of HEGs through real landscapes where releases may take place, something that will be facilitated by the results of the present study.

18.
Evolution ; 65(6): 1739-51, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21644960

RESUMEN

It is generally well understood that some ecological factors select for increased and others for decreased dispersal. However, it has remained difficult to assess how the evolutionary dynamics are influenced by the spatio-temporal structure of the environment. We address this question with an individual-based model that enables habitat structure to be controlled through variables such as patch size, patch turnover rate, and patch quality. Increasing patch size at the expense of patch density can select for more or less dispersal, depending on the initial configuration. In landscapes consisting of high-quality and long-lived habitat patches, patch degradation selects for increased dispersal, yet patch loss may select for reduced dispersal. These trends do not depend on the component of life-history that is affected by habitat quality or the component of life-history through which density-dependence operates. Our results are based on a mathematical method that enables derivation of both the evolutionary stable strategy and the stationary genotype distribution that evolves in a polymorphic population. The two approaches generally lead to similar predictions. However, the evolutionary stable strategy assumes that the ecological and evolutionary time scales can be separated, and we find that violation of this assumption can critically alter the evolutionary outcome.


Asunto(s)
Evolución Biológica , Ecosistema , Dinámica Poblacional , Modelos Logísticos , Modelos Biológicos , Mutación , Polimorfismo Genético , Selección Genética
19.
Evolution ; 65(1): 79-89, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20731716

RESUMEN

In spatially heterogeneous environments, the processes of gene flow, mutation, and sexual reproduction generate local genetic variation and thus provide material for local adaptation. On the other hand, these processes interchange maladapted for adapted genes and so, in each case, the net influence may be to reduce local adaptation. Previous work has indicated that this is the case in stable populations, yet it is less clear how the factors play out during population growth, and in the face of temporal environmental stochasticity. We address this issue with a spatially explicit, stochastic model. We find that dispersal, mutation, and sexual reproduction can all accelerate local adaptation in growing populations, although their respective roles may depend on the genetic make-up of the founding population. All three processes reduce local adaptation, however, in the long term, that is when population growth becomes balanced by density-dependent competition. These relationships are qualitatively maintained, although quantitatively reduced, if the resources are locally ephemeral. Our results suggest that species with high levels of local adaptation within their ranges may not be the same species that harbor potential for rapid local adaptation during population expansion.


Asunto(s)
Adaptación Fisiológica , Flujo Génico , Modelos Biológicos , Mutación , Reproducción , Ambiente , Flujo Genético , Crecimiento Demográfico , Reproducción Asexuada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA