Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791408

RESUMEN

Recently, fluorescent sensors have gained considerable attention due to their high sensitivity, low cost and noninvasiveness. Among the different materials that can be used for this purpose, carbon dots (CDs) represent valuable candidates for applications in sensing. These, indeed, are easily synthesized, show high quantum yield and are highly biocompatible. However, it was pointed out that the photoluminescence properties of these nanomaterials are strictly dependent on the synthetic and purification methods adopted. The presence of halloysite nanotubes (HNTs), a natural, low cost and biocompatible clay mineral, has been found to be efficient in obtaining small and highly monodispersed CDs without long and tedious purification techniques. Herein, we report the comparison of synthetic pathways for obtaining halloysite-N-doped CDs (HNTs-NCDs) that could be used in biological sensing. One was based on the synthesis of N-doped CDs by a bottom-up approach on HNTs' surface by a MW pyrolysis process; the other one was based on the post-modification of pristine N-doped CDs with halloysite derivatives. The evaluation of the best synthetic route was performed by different physico-chemical techniques. It was found that the bottom-up approach led to the formation of N-doped CDs with different functional groups onto the HNTs' surface. This evidence was also translated in the different fluorescence quantum yields and the existence of several functional groups in the obtained materials was investigated by potentiometric titrations. Furthermore, the ability of the synthesized nanomaterials as sensors for Fe3+ ions detection was assessed by spectroscopic measurements, and the cellular uptake was verified by confocal/fluorescence microscopies as well.


Asunto(s)
Arcilla , Puntos Cuánticos , Puntos Cuánticos/química , Arcilla/química , Colorantes Fluorescentes/química , Técnicas Biosensibles/métodos , Carbono/química , Humanos , Nanoestructuras/química , Nanotubos/química
2.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36835550

RESUMEN

Acute myeloid leukemia (AML) remains an insidious neoplasm due to the percentage of patients who develop resistance to both classic chemotherapy and emerging drugs. Multidrug resistance (MDR) is a complex process determined by multiple mechanisms, and it is often caused by the overexpression of efflux pumps, the most important of which is P-glycoprotein (P-gp). This mini-review aims to examine the advantages of using natural substances as P-gp inhibitors, focusing on four molecules: phytol, curcumin, lupeol, and heptacosane, and their mechanism of action in AML.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Curcumina , Leucemia Mieloide Aguda , Humanos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Curcumina/uso terapéutico , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Leucemia Mieloide Aguda/tratamiento farmacológico
3.
Molecules ; 28(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36770818

RESUMEN

Marine environments cover more than 70% of the Earth's surface and are among the richest and most complex ecosystems. In terms of biodiversity, the ocean represents an important source, still not widely exploited, of bioactive products derived from species of bacteria, plants, and animals. However, global warming, in combination with multiple anthropogenic practices, represents a serious environmental problem that has led to an increase in gelatinous zooplankton, a phenomenon referred to as jellyfish bloom. In recent years, the idea of "sustainable development" has emerged as one of the essential elements of green-economy initiatives; therefore, the marine environment has been re-evaluated and considered an important biological resource. Several bioactive compounds of marine origin are being studied, and among these, marine collagen represents one of the most attractive bio-resources, given its use in various disciplines, such as clinical applications, cosmetics, the food sector, and many other industrial applications. This review aims to provide a current overview of marine collagen applications in the pharmacological and biomedical fields, regenerative medicine, and cell therapy.


Asunto(s)
Organismos Acuáticos , Productos Biológicos , Animales , Ecosistema , Medicina Regenerativa , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Colágeno
4.
Drug Dev Res ; 83(6): 1331-1341, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35749723

RESUMEN

A series of [1,2]oxazolo[5,4-e]isoindole derivatives was evaluated against HL-60 cell line and its multidrug resistance (MDR) variant, HL-60R, resistant to doxorubicin and to other P-gp substrates by overexpressing the efflux pump. They displayed antiproliferative activities, with IC50 values ranging from 0.02 to 5.5 µM. In particular, the newly synthesized compound 4k produced synergistic effects in terms of cell growth inhibition and cell death induction either in combination with a Vinca alkaloid, Vinblastine, and a Taxane, Paclitaxel in HL-60R cells. The study of the mechanism of action indicated that all compounds showed antimitotic activity through inhibition of tubulin polymerization. Thus, [1,2]oxazoles could represent a valuable tool to overcome MDR mechanism, confirming the potential use of this class of compounds.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Isoindoles/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico
5.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35743037

RESUMEN

Oleanolic acid (OA) and Lupeol (LU) belong to the class of natural triterpenes and are endowed with a wide range of biological activities, including cytotoxicity toward several cancer cell lines. In this context, we investigated a set of compounds obtained from the two natural precursors for the cytotoxicity against leukemia HL60 cells and the multidrug-resistant (MDR) variant HL60R. Six new semi-synthetic triterpenes have been synthetized, fully characterized, and were investigated together with other triterpenes compounds for their pharmacological mechanism of action. The interaction of the more cytotoxic compounds with the nuclear factor kappa B (NF-κB) pathway has been also evaluated with the aid of docking. The lupane-like compounds were more active than the precursor, while the oleane-like compounds showed more complex behavior. Both OA and LU derivatives possess a similar interaction pattern with the p65 subunit of NF-κB, justifying the similar trend in their ability to inhibit the binding of p65 to DNA. Further, some of the derivatives tested were able to increase IκB-α levels preventing the translocation of NF-κB to the nucleus. In conclusion, this study offers a deeper insight on the pharmacological action of triterpenes toward leukemia cells, and it improves the background useful for the development of new anti-cancer drugs.


Asunto(s)
Leucemia , Neoplasias , Ácido Oleanólico , Triterpenos , Línea Celular , Humanos , Leucemia/tratamiento farmacológico , FN-kappa B/metabolismo , Triterpenos Pentacíclicos , Triterpenos/química , Triterpenos/farmacología
6.
Molecules ; 27(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35807446

RESUMEN

It was previously shown that the antitumor and cytotoxic activity of the essential oil (EO) extracted from the aerial parts of Glandora rosmarinifolia appears to involve a pro-oxidant mechanism in hepatocellular carcinoma (HCC) and in triple-negative breast cancer (TNBC) cell lines. Its most abundant compound is a hydroxy-methyl-naphthoquinone isomer. Important pharmacological activities, such as antitumor, antibacterial, antifungal, antiviral and antiparasitic activities, are attributed to naphthoquinones, probably due to their pro-oxidant or electrophilic potential; for some naphthoquinones, a mechanism of action of topoisomerase inhibition has been reported, in which they appear to act both as catalytic inhibitors and as topoisomerase II poisons. Our aim was to evaluate the cytotoxic activity of the essential oil on an acute myeloid leukemia cell line HL-60 and on its multidrug-resistant (MDR) variant HL-60R and verify its ability to interfere with topoisomerase II activity. MTS assay showed that G. rosmarinifolia EO induced a decrease in tumor cell viability equivalent in the two cell lines; this antitumor effect could depend on the pro-oxidant activity of EO in both cell lines. Furthermore, G. rosmarinifolia EO reduced the activity of Topo II in the nuclear extracts of HL-60 and HL-60R cells, as inferred from the inability to convert the kinetoplast DNA into the decatenated form and then not inducing linear kDNA. Confirming this result, flow cytometric analysis proved that EO induced a G0-G1 phase arrest, with cell reduction in the S-phase. In addition, the combination of EO with etoposide showed a good potentiation effect in terms of cytotoxicity in both cell lines. Our results highlight the antitumor activity of EO in the HL-60 cell line and its MDR variant with a peculiar mechanism as a Topo II modulator. Unlike etoposide, EO does not cause stabilization of a covalent Topo II-DNA intermediate but acts as a catalytic inhibitor. These data make G. rosmarinifolia EO a potential anticancer drug candidate due to its cytotoxic action, which is not affected by multidrug resistance.


Asunto(s)
Antineoplásicos , Boraginaceae , Carcinoma Hepatocelular , Leucemia Mieloide Aguda , Neoplasias Hepáticas , Naftoquinonas , Aceites Volátiles , Antineoplásicos/farmacología , Boraginaceae/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Etopósido/farmacología , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Naftoquinonas/farmacología , Aceites Volátiles/farmacología , Especies Reactivas de Oxígeno , Inhibidores de Topoisomerasa II/farmacología
7.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800828

RESUMEN

Hypercholesterolemia is one of the major causes of cardiovascular disease, the risk of which is further increased if other forms of dyslipidemia occur. Current therapeutic strategies include changes in lifestyle coupled with drug administration. Statins represent the most common therapeutic approach, but they may be insufficient due to the onset of resistance mechanisms and side effects. Consequently, patients with mild hypercholesterolemia prefer the use of food supplements since these are perceived to be safer. Here, we investigate the phytochemical profile and cholesterol-lowering potential of Protium heptaphyllum gum resin extract (PHE). Chemical characterization via HPLC-APCI-HRMS2 and GC-FID/MS identified 13 compounds mainly belonging to ursane, oleanane, and tirucallane groups. Studies on human hepatocytes have revealed how PHE is able to reduce cholesterol production and regulate the expression of proteins involved in its metabolism. (HMGCR, PCSK9, LDLR, FXR, IDOL, and PPAR). Moreover, measuring the inhibitory activity of PHE against HMGR, moderate inhibition was recorded. Finally, molecular docking studies identified acidic tetra- and pentacyclic triterpenoids as the main compounds responsible for this action. In conclusion, our study demonstrates how PHE may be a useful alternative to contrast hypercholesterolemia, highlighting its potential as a sustainable multitarget natural extract for the nutraceutical industry that is rapidly gaining acceptance as a source of health-promoting compounds.


Asunto(s)
Anticolesterolemiantes/farmacología , Hidrógeno/química , Gomas de Plantas/química , Resinas de Plantas/química , Triterpenos/farmacología , Anticolesterolemiantes/aislamiento & purificación , Dominio Catalítico/efectos de los fármacos , Colesterol/metabolismo , Cromatografía Líquida de Alta Presión , Suplementos Dietéticos , Evaluación Preclínica de Medicamentos , Ionización de Llama , Cromatografía de Gases y Espectrometría de Masas , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Lovastatina/farmacología , Modelos Moleculares , Simulación del Acoplamiento Molecular , Conformación Proteica , Triterpenos/aislamiento & purificación
8.
Int J Mol Sci ; 21(9)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349210

RESUMEN

Multidrug resistance (MDR), of the innate and acquired types, is one of major problems in treating tumor diseases with a good chance of success. In this review, we examine the key role of nuclear factor-kappa B (NF-κB) to induce MDR in three tumor models characterized precisely by innate or acquired MDR, in particular triple negative breast cancer (TNBC), hepatocellular carcinoma (HCC), and acute myeloid leukemia (AML). We also present different pharmacological approaches that our group have employed to reduce the expression/activation of this transcriptional factor and thus to restore chemo-sensitivity. Finally, we examine the latest scientific evidence found by other groups, the most significant clinical trials regarding NF-κB, and new perspectives on the possibility to consider this transcriptional factor a valid drug target in neoplastic diseases.


Asunto(s)
FN-kappa B/metabolismo , Neoplasias/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Susceptibilidad a Enfermedades , Resistencia a Antineoplásicos , Humanos , Terapia Molecular Dirigida , FN-kappa B/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Neoplasias/patología
9.
Bioorg Chem ; 90: 103054, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31212180

RESUMEN

Oleanolic and ursolic acids are two ubiquitous isomeric triterpene phytochemicals known for their anticancer activity. A set of derivatives of the two compounds with a modified oxidation state and lipophylicity at C-3 and C-28 positions, were prepared and tested as anticancer agents versus the lines HepG2, Hep3B and HA22T/VGH of hepatocarcinoma, a strongly aggressive tumor that is not responsive toward the standard therapies. New derivatives containing a three carbons side chain on the C-3 position were synthetized in both stereoisomeric forms by the Barbier-Grignard procedure and three of them were found to be active toward all of the three targets. The implication of the transcriptional nuclear factor NF-κB in the mechanism of action was assessed for the more active compounds in the set, as hepatocellular carcinoma (HCC) cyto-types are known to overexpress NF-κB.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , FN-kappa B/metabolismo , Ácido Oleanólico/farmacología , Extractos Vegetales/farmacología , Triterpenos/farmacología , Apoptosis , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Proliferación Celular , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Malus/química , Olea/química , Células Tumorales Cultivadas , Ácido Ursólico
10.
Molecules ; 24(16)2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31394879

RESUMEN

Drug resistance is a major obstacle in antibiotic and antitumor chemotherapy. In response to the necessity to find new therapeutic strategies, plant secondary metabolites including essential oils (EOs) may represent one of the best sources. EOs in plants act as constitutive defenses against biotic and abiotic stress, and they play an important role in the pharmacology for their low toxicity, good pharmacokinetic and multitarget activity. In this context, natural products such as EOs are one of the most important sources of drugs used in pharmaceutical therapeutics. The aim of this paper was to identify the chemical composition of the essential oil of Alluaudia procera leaves, obtained by hydrodistillation and analysed by gas chromatography-mass spectrometry, and to verify its biological activities on acute myeloid leukemia cancer cell HL60 and its multidrugresistant variant HL60R and the Gram-positive Staphylococcus aureus exhibiting multi-antibiotic resistance. We speculate that cytotoxic and antibiotic effects observed in the tested resistant models may be due to the coordinate activities of forty compounds detected or to the C16 macrocyclic lactones which are the major ones (30%). Our data confirm the possibility of using EOs as therapeutic strategies in resistant models is due to the heterogeneous composition of the oils themselves.


Asunto(s)
Resistencia a Medicamentos , Magnoliopsida/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Estructura Molecular , Fitoquímicos/química , Fitoquímicos/farmacología , Análisis Espectral
11.
J Colloid Interface Sci ; 663: 9-20, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38387188

RESUMEN

Peptide nucleic acid (PNA) is a DNA mimic that shows good stability against nucleases and proteases, forming strongly recognized complementary strands of DNA and RNA. However, due to its feeble ability to cross the cellular membrane, PNA activity and its targeting gene action is limited. Halloysite nanotubes (HNTs) are a natural and low-cost aluminosilicate clay. Because of their peculiar ability to cross cellular membrane, HNTs represent a valuable candidate for delivering genetic materials into cells. Herein, two differently charged 12-mer PNAs capable of recognizing as molecular target a 12-mer DNA molecule mimicking a purine-rich tract of neuroglobin were synthetized and loaded onto HNTs by electrostatic attraction interactions. After characterization, the kinetic release was also assessed in media mimicking physiological conditions. Resonance light scattering measurements assessed their ability to bind complementary single-stranded DNA. Furthermore, their intracellular delivery was assessed by confocal laser scanning microscopy on living MCF-7 cells incubated with fluorescence isothiocyanate (FITC)-PNA and HNTs labeled with a probe. The nanomaterials were found to cross cellular membrane and cell nuclei efficiently. Finally, it is worth mentioning that the HNTs/PNA can reduce the level of neuroglobin gene expression, as shown by reverse transcription-quantitative polymerase chain reaction and western blotting analysis.


Asunto(s)
ADN , Nanotubos , Arcilla , Neuroglobina , ARN Mensajero/genética , Nanotubos/química
12.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35337153

RESUMEN

Drug resistance is the ability of cancer cells to gain resistance to both conventional and novel chemotherapy agents, and remains a major problem in cancer therapy. Resistance mechanisms are multifactorial and involve more strictly pharmacological factors, such as P-glycoprotein (P-gp) and biological factors such as inhibitor of apoptosis proteins (IAPs) and the nuclear factor-kappa B (NF-κB) pathway. Possible therapeutic strategies for the treatment of acute myeloid leukemia (AML) have increased in recent years; however, drug resistance remains a problem for most pa-tients. Phytol and heptacosane are the major compounds of Euphorbia intisy essential oil (EO) which were demonstrated to inhibit P-gp in a multidrug resistant in vitro model of AML. This study investigated the mechanism by which phytol and heptacosane improve P-gp-mediated drug transport. Phytol suppresses the P-gp expression via NF-κB inhibition and does not seem to act on the efflux system. Heptacosane acts as a substrate and potent P-gp inhibitor, demonstrating the ability to retain the substrate doxorubicin inside the cell and enhancing its cytotoxic effects. Our results suggest that these compounds act as non-toxic modulators of P-gp through different mechanisms and are able to revert P-gp-mediated drug resistance in tumor cells.

13.
Colloids Surf B Biointerfaces ; 213: 112385, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35168104

RESUMEN

The prodrug approach, as well as the development of specific systems able to deliver a chemotherapeutic agent in the target site, decreasing the side effects often associated with its administration, are still a challenging. In this context, both methotrexate drug molecules (MTX) and biotin ligand moieties, whose receptors are overexpressed on the surface of several cancer cells, were loaded on halloysite nanotubes (HNTs) to develop nanomaterial based on multifunctional and "smart" delivery systems. To highlight the crucial role played by biotin, carrier systems based on HNTs and MTX were also synthetized. In detail, several approaches were envisaged: i) a supramolecular interaction between the clay and the drug; ii) a covalent grafting of the drug onto the HNTs external surface and, iii) a combination of both approaches. The nanomaterials obtained were characterized by thermogravimetric analysis, FT-IR, and UV-vis spectroscopies, DLS and ζ-potential measurements and the morphologies were imaged by HAADF/STEM investigations. Kinetic release experiments at different pH conditions were also performed. Finally, as a proof-of-concept application of our pro-drug delivery systems based on HNTs in cancer therapy, the cytotoxic effects were evaluated on acute myeloid leukemia cell lines, HL60 and its multidrug resistance variant, HL60R. The obtained results showed that both the MTX prodrug system and the biotinylated ones played a crucial role in the biological activity and, they are promising agents for the cancer treatments.


Asunto(s)
Antineoplásicos , Leucemia , Nanotubos , Profármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Biotina , Línea Celular , Arcilla/química , Humanos , Leucemia/tratamiento farmacológico , Metotrexato/farmacología , Nanotubos/química , Profármacos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier
14.
J Colloid Interface Sci ; 620: 221-233, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428004

RESUMEN

The development of systems able to deliver genetic material into a target site is a challenge for modern medicine. Single-stranded peptide nucleic acids have attracted attention as promising therapeutic molecules for diagnostic and gene therapy. However, their poor cell membrane permeability represents a drawback for biomedical applications. Halloysite nanotubes (HNTs) are emerging materials in drug delivery applications both for their ability to penetrate cell membranes and for enhancing the solubility of drugs in biological media. Herein, we report the first example of the use of a nanocarrier based on halloysite labelled with fluorescent switchable halochromic oxazine molecules, to deliver a single-stranded peptide nucleic acids tetramer (PNAts) into living cells. The PNAts is covalently attached to halloysite (HNTs-PNA), whereas the fluorescent probe supramolecularly interacts with HNTs. The ability of the nanomaterial to bind complementary single-stranded DNA was assessed by resonance light scattering measurements. Finally, studies of cellular uptake were carried out by confocal laser scanning microscopy on normal and tumoral cell lines. This work highlights the usefulness of the covalent approach to generate HNTs-PNA nanomaterials for the potential targeting of future specific nucleic acids in living cells, which could open the doorway to novel possibilities for theranostic and gene therapy applications.


Asunto(s)
Nanotubos , Ácidos Nucleicos de Péptidos , Línea Celular Tumoral , Arcilla/química , Colorantes Fluorescentes , Nanotubos/química
15.
Colloids Surf B Biointerfaces ; 220: 112931, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36265314

RESUMEN

In the last years, the use of clay minerals for pharmaceutical purposes has increased due to their interesting properties. Hectorite (Ht) is a clay belonging to the smectite group which has attracted attention for applications in biology, tissue engineering and as drug carrier and delivery system. However, the mechanisms involved in Ht cellular uptake and transport into cells, are still unclear. Herein, we used a labeled Ht (Ht/1Cl) to study both the cellular uptake, by confocal laser scanning microscopy, and internalization pathways involved in the cellular uptake, by various endocytosis-inhibiting studies and fluorescence microscopy. These studies highlighted that Ht can penetrate the cellular membrane, localizing mainly in the cytoplasm. The main intracellular transport mechanisms are the ATP-dependent ones and those where filaments and microtubules are involved. Finally, as proof of concept for the potential of Ht as carrier system, we envisaged the covalent grafting of the anticancer molecule methotrexate (MTX), chosen as model, to obtain the Ht-MTX nanomaterial. The covalent linkage was confirmed by several techniques and the morphology of the obtained nanomaterial was imaged by SEM and TEM investigations. The kinetic release of the drug from the Ht-MTX nanomaterial in physiological conditions was studied as well. Furthermore, cytotoxic studies on different cell lines, namely, HL-60, HL-60R, MCF-7, 5637, UMUC3 and RT112 showed that Ht could be a promising material for anticancer therapy.


Asunto(s)
Portadores de Fármacos , Metotrexato , Arcilla , Metotrexato/farmacología , Silicatos
16.
Crit Rev Oncog ; 26(2): 27-37, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34347971

RESUMEN

Drug resistance, which is often of a multiple type, can be defined as the ability of cancer cells to obtain resistance to both conventional and novel chemotherapy agents. It remains a major problem to solve in cancer therapy. The mechanisms of resistance are multifactorial, and in our cellular models of acute myeloid leukemia, hepatocellular carcinoma, and triple-negative breast cancer, it involves the NF-κB pathway. In our opinion, multitarget molecules can be considered as privileged compounds capable of attacking and reversing the resistant phenotype. In the phenomena of both innate and acquired drug resistance that we have been studying since 1998 to today and up to 2016 under the guidance of Professor Natale D'Alessandro, more strictly pharmacological factors are certainly involved. These factors include P-glycoprotein and biological factors such as inhibitory proteins; apoptosis; the Raf-1 kinase inhibitor protein, an important tumor suppressor and metastasis inhibitor, which enhances drug-induced apoptosis of cancer cells; and Yin Yang, a transcription factor involved in drug resistance.


Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Neoplasias , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Humanos , FN-kappa B/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Factor de Transcripción YY1/metabolismo
17.
Pharmaceuticals (Basel) ; 14(2)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572621

RESUMEN

Euphorbia species have a large spectrum of traditional medicinal uses. We tested the biological activities of the essential oil (EO) of Euphorbia intisy Drake in an acquired multidrug resistance leukemia model to assess whether the EO obtained by hydrodistillation of stems was able to reverse the resistant phenotype. HL-60R cell lines are characterized by the overexpression of P-glycoprotein (P-gp), inhibitors of apoptosis proteins (IAPs) and constitutive expression of NF-κB. EO chemical composition was determined by GC/MS analysis; cytotoxic activity of EO by MTS assay alone or in combination with doxorubicin; pro-apoptotic effect and doxorubicin accumulation were analyzed by flow cytometry; P-gp ATPase activity was measured by P-gp-Glo™ assay systems kit. The ability to inhibit NF-κB and its target genes was also assessed. E. intisy EO exhibited a comparable cytotoxic effect and ability to block P-gp in both the HL-60 and its MDR variant HL-60R. In addition, EO suppressed P-gp protein expression and significantly downregulated MDR1 mRNA level, as well as some IAPs proteins, probably through the inhibition of NF-κB. Our results suggest that E. intisy EO could reverse P-gp-mediated drug resistance in tumor cells acting as a chemosensitizing agent.

18.
Adv Biol Regul ; 77: 100739, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32773105

RESUMEN

The COVID-19 pandemic has put a serious strain on health treatments as well at the economies of many nations. Unfortunately, there is not currently available vaccine for SARS-Cov-2/COVID-19. Various types of patients have delayed treatment or even routine check-ups and we are adapting to a virtual world. In many cases, surgeries are delayed unless they are essential. This is also true with regards to cancer treatments and screening. Interestingly, some existing drugs and nutraceuticals have been screened for their effects on COVID-19. Certain FDA approved drugs, vitamin, natural products and trace minerals may be repurposed to treat or improve the prevention of COVID-19 infections and disease progression. This review article will summarize how the treatments of various cancer patients has changed during the COVID-19 era as well as discuss the promise of some existing drugs and other agents to be repurposed to treat this disease.


Asunto(s)
Antineoplásicos/uso terapéutico , Antivirales/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/epidemiología , Neoplasias/tratamiento farmacológico , Neoplasias/epidemiología , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/epidemiología , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/efectos de los fármacos , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , COVID-19 , Comorbilidad , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Reposicionamiento de Medicamentos , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Hidroxicloroquina/uso terapéutico , Neoplasias/inmunología , Neoplasias/virología , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/inmunología , Neumonía Viral/inmunología , Neumonía Viral/virología , SARS-CoV-2 , Transducción de Señal/genética , Transducción de Señal/inmunología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Oligoelementos/uso terapéutico , Vitaminas/uso terapéutico
19.
Adv Biol Regul ; 75: 100672, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31685431

RESUMEN

Improving the effects of chemotherapy and reducing the side effects are important goals in cancer research. Various approaches have been examined to enhance the effectiveness of chemotherapy. For example, signal transduction inhibitors or hormonal based approaches have been included with chemo- or radio-therapy. MIA-PaCa-2 and BxPC-3 pancreatic ductal adenocarcinoma (PDAC) cells both express the estrogen receptor (ER). The effects of ß-estradiol on the growth of PDAC cells has not been examined yet the ER is expressed in PDAC cells. We have examined the effects of combining ß-estradiol with chemotherapeutic drugs, signal transcription inhibitors, natural products and nutraceuticals on PDAC. In most cases, inclusion of ß-estradiol with chemotherapeutic drugs increased chemosensitivity. These results indicate some approaches involving ß-estradiol which may be used to increase the effectiveness of chemotherapeutic and other drugs on the growth of PDAC.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Ductal Pancreático , Proliferación Celular/efectos de los fármacos , Suplementos Dietéticos , Estradiol/farmacología , Neoplasias Pancreáticas , Transducción de Señal/efectos de los fármacos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Femenino , Interacciones Alimento-Droga , Humanos , Persona de Mediana Edad , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología
20.
Ann Transplant ; 14(1): 23-31, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19289993

RESUMEN

BACKGROUND: Tacrolimus is a substrate of cytochrome P-450 (CYP) 3A enzyme and of the drug transporter ABCB1. We have investigated the effects of possible relevant CYP3A5 and ABCB1 single nucleotide polymorphisms (SNPs) present in both donors and recipients on tacrolimus blood levels achieved in a population of 32 Caucasian liver transplant patients. MATERIAL/METHODS: At 1, 3 and 6 months after transplantation, tacrolimus doses (mg/kg/day) and trough blood levels (C(0)) were determined. Polymerase chain reaction followed by restriction fragment length polymorphism analysis was used for genotyping CYP3A5*3 [6986A>G] as well as ABCB1 at exons 21 [2677G>T] and 26 [3435C>T]. RESULTS: 87.5% of the population showed a CYP3A5*3/*3 genotype. For the ABCB1 SNPs, in the case of 3435C>T the total frequency observed for the allelic variant was 50%. For the 2677G>T, the total frequency of the allelic variant was 12.5%, lower than in other Caucasian populations and without any significant linkage with 3435C>T. At 3 and 6 months after transplantation, tacrolimus dose requirements were significantly higher in patients receiving a liver with one copy of the *1 allele compared to those homozygous for the *3 allele (0.111+/-0.057 vs. 0.057+/-0.030 [P<0.05] at 3 month and 0.086+/-0.051 vs. 0.044+/-0.025 [P<0.05] at 6 month). For the recipients' genotypes, the presence of at least one *1 copy tended, though not statistically significantly, to increase tacrolimus doses. With regard to the ABCB1 SNPs, they did not show any influence on tacrolimus dosing requirements. CONCLUSIONS: Pharmacogenetic analysis of CYP3A5 in the donor could contribute to determine the appropriate initial dosage of tacrolimus in liver transplant patients.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Citocromo P-450 CYP3A/genética , Inmunosupresores/administración & dosificación , Trasplante de Hígado/inmunología , Polimorfismo de Nucleótido Simple , Tacrolimus/administración & dosificación , Subfamilia B de Transportador de Casetes de Unión a ATP , Femenino , Genotipo , Homocigoto , Humanos , Inmunosupresores/sangre , Masculino , Farmacogenética , Tacrolimus/sangre , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA