Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(5): 1013-1025.e24, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36827973

RESUMEN

The emergence of drug-resistant tuberculosis has created an urgent need for new anti-tubercular agents. Here, we report the discovery of a series of macrolides called sequanamycins with outstanding in vitro and in vivo activity against Mycobacterium tuberculosis (Mtb). Sequanamycins are bacterial ribosome inhibitors that interact with the ribosome in a similar manner to classic macrolides like erythromycin and clarithromycin, but with binding characteristics that allow them to overcome the inherent macrolide resistance of Mtb. Structures of the ribosome with bound inhibitors were used to optimize sequanamycin to produce the advanced lead compound SEQ-9. SEQ-9 was efficacious in mouse models of acute and chronic TB as a single agent, and it demonstrated bactericidal activity in a murine TB infection model in combination with other TB drugs. These results support further investigation of this series as TB clinical candidates, with the potential for use in new regimens against drug-susceptible and drug-resistant TB.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Animales , Ratones , Antituberculosos/farmacología , Macrólidos , Farmacorresistencia Bacteriana , Claritromicina
2.
Am J Respir Crit Care Med ; 210(3): 343-351, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38564365

RESUMEN

Rationale: Observational studies suggest that high-dose isoniazid may be efficacious in treating multidrug-resistant tuberculosis. However, its activity against Mycobacterium tuberculosis (M.tb) with katG mutations (which typically confer high-level resistance) is not established. Objectives: To characterize the early bactericidal activity (EBA) of high-dose isoniazid in patients with tuberculosis caused by katG-mutated M.tb. Methods: A5312 was a phase IIA randomized, open-label trial. Participants with tuberculosis caused by katG-mutated M.tb were randomized to receive 15 or 20 mg/kg isoniazid daily for 7 days. Daily sputum samples were collected for quantitative culture. Intensive pharmacokinetic sampling was performed on Day 6. Data were pooled across all A5312 participants for analysis (drug-sensitive, inhA-mutated, and katG-mutated M.tb). EBA was determined using nonlinear mixed-effects modeling. Measurements and Main Results: Of 80 treated participants, 21 had katG-mutated M.tb. Isoniazid pharmacokinetics were best described by a two-compartment model with an effect of NAT2 acetylator phenotype on clearance. Model-derived maximum concentration and area under the concentration-time curve in the 15 and 20 mg/kg groups were 15.0 and 22.1 mg/L and 57.6 and 76.8 mg ⋅ h/L, respectively. Isoniazid bacterial kill was described using an effect compartment and a sigmoidal maximum efficacy relationship. Isoniazid potency against katG-mutated M.tb was approximately 10-fold lower than in inhA-mutated M.tb. The highest dose of 20 mg/kg did not demonstrate measurable EBA, except against a subset of slow NAT2 acetylators (who experienced the highest concentrations). There were no grade 3 or higher drug-related adverse events. Conclusions: This study found negligible bactericidal activity of high-dose isoniazid (15-20 mg/kg) in the majority of participants with tuberculosis caused by katG-mutated M.tb. Clinical trial registered with www.clinicaltrials.gov (NCT01936831).


Asunto(s)
Antituberculosos , Proteínas Bacterianas , Isoniazida , Mutación , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Isoniazida/farmacocinética , Isoniazida/administración & dosificación , Isoniazida/farmacología , Isoniazida/uso terapéutico , Humanos , Antituberculosos/farmacocinética , Antituberculosos/administración & dosificación , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Femenino , Masculino , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Adulto , Persona de Mediana Edad , Proteínas Bacterianas/genética , Catalasa/genética , Relación Dosis-Respuesta a Droga , Anciano , Pruebas de Sensibilidad Microbiana
3.
Annu Rev Pharmacol Toxicol ; 61: 495-516, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-32806997

RESUMEN

Tuberculosis (TB) kills more people than any other infectious disease. Challenges for developing better treatments include the complex pathology due to within-host immune dynamics, interpatient variability in disease severity and drug pharmacokinetics-pharmacodynamics (PK-PD), and the growing emergence of resistance. Model-informed drug development using quantitative and translational pharmacology has become increasingly recognized as a method capable of drug prioritization and regimen optimization to efficiently progress compounds through TB drug development phases. In this review, we examine translational models and tools, including plasma PK scaling, site-of-disease lesion PK, host-immune and bacteria interplay, combination PK-PD models of multidrug regimens, resistance formation, and integration of data across nonclinical and clinical phases.We propose a workflow that integrates these tools with computational platforms to identify drug combinations that have the potential to accelerate sterilization, reduce relapse rates, and limit the emergence of resistance.


Asunto(s)
Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Antituberculosos/uso terapéutico , Combinación de Medicamentos , Humanos , Tuberculosis/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
4.
Antimicrob Agents Chemother ; 68(10): e0061524, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39287403

RESUMEN

Despite known treatments, tuberculosis (TB) remains the world's top infectious killer, highlighting the pressing need for new drug regimens. To prioritize the most efficacious drugs for clinical testing, we previously developed a PK-PD translational platform with bacterial dynamics that reliably predicted short-term monotherapy outcomes in Phase IIa trials from preclinical mouse studies. In this study, we extended our platform to include PK-PD models that account for drug-drug interactions in combination regimens and bacterial regrowth in our bacterial dynamics model to predict cure at the end of treatment and relapse 6 months post-treatment. The Phase III STAND trial testing a new regimen comprised of pretomanid (Pa), moxifloxacin (M), and pyrazinamide (Z) (PaMZ) was suspended after a separate ongoing trial (NC-005) suggested that adding bedaquiline (B) to the PaMZ regimen would improve efficacy. To forecast if the addition of B would, indeed, benefit the PaMZ regimen, we applied an extended translational platform to both regimens. We predicted currently available short- and long-term clinical data well for drug combinations related to BPaMZ. We predicted the addition of B to PaMZ to shorten treatment duration by 2 months and to have similar bacteriological success to standard HRZE treatment (considering only treatment success but not withdrawal from side effects and other adverse events), both at the end of treatment for treatment efficacy and 6 months after treatment has ended in relapse prevention. Using BPaMZ as a case study, we have demonstrated our translational platform can predict Phase II and III outcomes prior to actual trials, allowing us to better prioritize the regimens most likely to succeed.


Asunto(s)
Antituberculosos , Diarilquinolinas , Moxifloxacino , Mycobacterium tuberculosis , Pirazinamida , Antituberculosos/uso terapéutico , Antituberculosos/farmacología , Pirazinamida/uso terapéutico , Pirazinamida/farmacología , Animales , Ratones , Diarilquinolinas/farmacología , Diarilquinolinas/uso terapéutico , Moxifloxacino/uso terapéutico , Moxifloxacino/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Humanos , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Quimioterapia Combinada , Nitroimidazoles/uso terapéutico , Nitroimidazoles/farmacología , Resultado del Tratamiento , Interacciones Farmacológicas
5.
Antimicrob Agents Chemother ; 68(4): e0156223, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38376228

RESUMEN

The combination of bedaquiline, pretomanid, and linezolid (BPaL) has become a preferred regimen for treating multidrug- and extensively drug-resistant tuberculosis (TB). However, treatment-limiting toxicities of linezolid and reports of emerging bedaquiline and pretomanid resistance necessitate efforts to develop new short-course oral regimens. We recently found that the addition of GSK2556286 increases the bactericidal and sterilizing activity of BPa-containing regimens in a well-established BALB/c mouse model of tuberculosis. Here, we used this model to evaluate the potential of new regimens combining bedaquiline or the more potent diarylquinoline TBAJ-587 with GSK2556286 and the DprE1 inhibitor TBA-7371, all of which are currently in early-phase clinical trials. We found the combination of bedaquiline, GSK2556286, and TBA-7371 to be more active than the first-line regimen and nearly as effective as BPaL in terms of bactericidal and sterilizing activity. In addition, we found that GSK2556286 and TBA-7371 were as effective as pretomanid and the novel oxazolidinone TBI-223 when either drug pair was combined with TBAJ-587 and that the addition of GSK2556286 increased the bactericidal activity of the TBAJ-587, pretomanid, and TBI-223 combination. We conclude that GSK2556286 and TBA-7371 have the potential to replace pretomanid, an oxazolidinone, or both components, in combination with bedaquiline or TBAJ-587.


Asunto(s)
Mycobacterium tuberculosis , Nitroimidazoles , Oxazolidinonas , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Animales , Ratones , Diarilquinolinas/farmacología , Diarilquinolinas/uso terapéutico , Antituberculosos/uso terapéutico , Antituberculosos/farmacología , Linezolid/farmacología , Linezolid/uso terapéutico , Tuberculosis/tratamiento farmacológico , Nitroimidazoles/farmacología , Oxazolidinonas/farmacología , Oxazolidinonas/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
6.
Antimicrob Agents Chemother ; : e0035724, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39345183

RESUMEN

Isoniazid is an important first-line medicine to treat tuberculosis (TB). Isoniazid resistance increases the risk of poor treatment outcomes and development of multidrug resistance, and is driven primarily by mutations involving katG, encoding the prodrug-activating enzyme, rather than its validated target, InhA. The chemical tractability of InhA has fostered efforts to discover direct inhibitors of InhA (DIIs). In this study, we bridge the gap in understanding the potential contribution of DIIs to novel combination regimens and demonstrate a clear distinction of DIIs, like GSK693 and the newly described GSK138, from isoniazid, based on activity against clinical isolates and contribution to novel drug regimens. The results suggest that DIIs, specifically GSK138 and GSK693, could be promising partners in novel drug regimens, including those used against isoniazid-resistant TB, potentially enhancing their efficacy and/or preventing the selection of resistant mutants and supporting the continued exploration of InhA as a promising target for TB drug development.

7.
Antimicrob Agents Chemother ; 67(12): e0078923, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37966090

RESUMEN

Contezolid is a new oxazolidinone with in vitro and in vivo activity against Mycobacterium tuberculosis comparable to that of linezolid. Pre-clinical and clinical safety studies suggest it may be less toxic than linezolid, making contezolid a potential candidate to replace linezolid in the treatment of drug-resistant tuberculosis. We evaluated the dose-ranging activity of contezolid, alone and in combination with bedaquiline and pretomanid, and compared it with linezolid at similar doses, in an established BALB/c mouse model of tuberculosis. Contezolid had an MIC of 1 µg/mL, similar to linezolid, and exhibited similar bactericidal activity in mice. Contezolid-resistant mutants selected in vitro had 32- to 64-fold increases in contezolid MIC and harbored mutations in the mce3R gene. These mutants did not display cross-resistance to linezolid. Our results indicate that contezolid has the potential to replace linezolid in regimens containing bedaquiline and pretomanid and likely other regimens.


Asunto(s)
Mycobacterium tuberculosis , Oxazolidinonas , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Animales , Ratones , Linezolid/farmacología , Linezolid/uso terapéutico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Modelos Animales de Enfermedad , Oxazolidinonas/farmacología , Oxazolidinonas/uso terapéutico , Diarilquinolinas/farmacología , Diarilquinolinas/uso terapéutico , Tuberculosis/tratamiento farmacológico , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
8.
Antimicrob Agents Chemother ; 67(7): e0153222, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37255473

RESUMEN

Bedaquiline (BDQ) is an effective drug for the treatment of drug-resistant tuberculosis. Mutations in atpE, which encodes the target of BDQ, are associated with large increases in MICs. Mutations in Rv0678 that derepress the transcription of the MmpL5-MmpS5 efflux transporter are associated with smaller increases in MICs. However, Rv0678 mutations are the most common mutations that are associated with BDQ resistance in clinical isolates, and they also confer cross-resistance to clofazimine (CFZ). To investigate the mechanism of BDQ resistance and the correlation between Rv0678 mutations and target-based atpE mutations, M. tuberculosis strains were exposed to different concentrations of BDQ or CFZ to select Rv0678 mutations and atpE mutations. Gene overexpression strains were constructed to illustrate the roles of MmpL5 and MmpS5. A quantitative proteome analysis was performed to compare the BDQ-resistant mutants to the isogenic strain H37Rv. Here, we report that the Rv0678 mutations were more readily selected than were the atpE mutations at low concentrations of BDQ or CFZ. The atpE mutations were selected by high concentrations of BDQ exposure. The overexpression of both mmpL5 and mmpS5 reduced the susceptibility of Mycobacterium tuberculosis to BDQ and CFZ. Secreted immunogenic proteins and proteins involved in the biosynthesis and transport of phthiocerol dimycocerosates were associated with Rv0678 mutations conferring BDQ resistance in the proteome analysis. In conclusion, exposure to different bedaquiline concentrations resulted in the selection of different mutations. The coexpression of MmpL5 and MmpS5 contributed to drug resistance and upregulated pathogenic proteins in M. tuberculosis, suggesting MmpL5-MmpS5 as a new potential target for antituberculosis drug development. These results warrant further surveillance for the evolution of BDQ resistance during clinical usage.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Proteoma/genética , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Diarilquinolinas/farmacología , Diarilquinolinas/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/genética , Clofazimina/farmacología , Clofazimina/uso terapéutico , Mutación/genética , Pruebas de Sensibilidad Microbiana
9.
Antimicrob Agents Chemother ; 67(4): e0003523, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36920217

RESUMEN

A regimen comprised of bedaquiline (BDQ, or B), pretomanid, and linezolid (BPaL) is the first oral 6-month regimen approved by the U.S. Food and Drug Administration and recommended by the World Health Organization for the treatment of extensively drug-resistant tuberculosis. We used a well-established BALB/c mouse model of tuberculosis to evaluate the treatment-shortening potential of replacing bedaquiline with either of two new, more potent diarylquinolines, TBAJ-587 and TBAJ-876, in early clinical trials. We also evaluated the effect of replacing linezolid with a new oxazolidinone, TBI-223, exhibiting a larger safety margin with respect to mitochondrial toxicity in preclinical studies. Replacing bedaquiline with TBAJ-587 at the same 25-mg/kg dose significantly reduced the proportion of mice relapsing after 2 months of treatment, while replacing linezolid with TBI-223 at the same 100-mg/kg dose did not significantly change the proportion of mice relapsing. Replacing linezolid or TBI-223 with sutezolid in combination with TBAJ-587 and pretomanid significantly reduced the proportion of mice relapsing. In combination with pretomanid and TBI-223, TBAJ-876 at 6.25 mg/kg was equipotent to TBAJ-587 at 25 mg/kg. We conclude that replacement of bedaquiline with these more efficacious and potentially safer diarylquinolines and replacement of linezolid with potentially safer and at least as efficacious oxazolidinones in the clinically successful BPaL regimen may lead to superior regimens capable of treating both drug-susceptible and drug-resistant TB more effectively and safely.


Asunto(s)
Nitroimidazoles , Oxazolidinonas , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Animales , Ratones , Diarilquinolinas/farmacología , Diarilquinolinas/uso terapéutico , Antituberculosos/uso terapéutico , Linezolid/uso terapéutico , Tuberculosis/tratamiento farmacológico , Nitroimidazoles/farmacología , Nitroimidazoles/uso terapéutico , Oxazolidinonas/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
10.
Antimicrob Agents Chemother ; 67(7): e0048123, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37338374

RESUMEN

Administration of tuberculosis preventive therapy (TPT) to individuals with latent tuberculosis infection is an important facet of global tuberculosis control. The use of long-acting injectable (LAI) drug formulations may simplify and shorten regimens for this indication. Rifapentine and rifabutin have antituberculosis activity and physiochemical properties suitable for LAI formulation, but there are limited data available for determining the target exposure profiles required for efficacy in TPT regimens. The objective of this study was to determine exposure-activity profiles of rifapentine and rifabutin to inform development of LAI formulations for TPT. We used a validated paucibacillary mouse model of TPT in combination with dynamic oral dosing of both drugs to simulate and understand exposure-activity relationships to inform posology for future LAI formulations. This work identified several LAI-like exposure profiles of rifapentine and rifabutin that, if achieved by LAI formulations, could be efficacious as TPT regimens and thus can serve as experimentally determined targets for novel LAI formulations of these drugs. We present novel methodology to understand the exposure-response relationship and inform the value proposition for investment in development of LAI formulations that have utility beyond latent tuberculosis infection.


Asunto(s)
Tuberculosis Latente , Rifabutina , Animales , Ratones , Rifabutina/uso terapéutico , Antituberculosos/uso terapéutico , Tuberculosis Latente/tratamiento farmacológico , Tuberculosis Latente/prevención & control , Rifampin/uso terapéutico
11.
Eur Respir J ; 62(2)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37321622

RESUMEN

BACKGROUND: Phase 2a trials in tuberculosis typically use early bactericidal activity (EBA), the decline in sputum CFU over 14 days, as the primary end-point for testing the efficacy of drugs as monotherapy. However, the cost of phase 2a trials can range from USD 7 million to USD 19.6 million on average, while >30% of drugs fail to progress to phase 3. Better utilising pre-clinical data to predict and prioritise the most likely drugs to succeed will thus help to accelerate drug development and reduce costs. We aim to predict clinical EBA using pre-clinical in vivo pharmacokinetic (PK)-pharmacodynamic (PD) data and a model-based translational pharmacology approach. METHODS AND FINDINGS: First, mouse PK, PD and clinical PK models were compiled. Second, mouse PK-PD models were built to derive an exposure-response relationship. Third, translational prediction of clinical EBA studies was performed using mouse PK-PD relationships and informed by clinical PK models and species-specific protein binding. Presence or absence of clinical efficacy was accurately predicted from the mouse model. Predicted daily decreases of CFU in the first 2 days of treatment and between day 2 and day 14 were consistent with clinical observations. CONCLUSION: This platform provides an innovative solution to inform or even replace phase 2a EBA trials, to bridge the gap between mouse efficacy studies and phase 2b and phase 3 trials, and to substantially accelerate drug development.


Asunto(s)
Antituberculosos , Tuberculosis , Animales , Ratones , Antituberculosos/uso terapéutico , Antituberculosos/farmacocinética , Modelos Animales de Enfermedad , Tuberculosis/tratamiento farmacológico
12.
Am J Respir Crit Care Med ; 205(5): 570-579, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34939891

RESUMEN

Rationale: Completion of preventive therapy is a major bottleneck in global tuberculosis control. Long-acting injectable drug formulations would shorten therapy administration and may thereby improve completion rates. Recently, a long-acting formulation of bedaquiline demonstrated antituberculosis activity for up to 12 weeks after injection in a validated mouse model of preventive therapy. Objectives: The objectives of this study were to 1) determine the total duration of activity after an injection of long-acting bedaquiline and 2) evaluate the activity of regimens comprised of long-acting bedaquiline plus short (2-4 wk) oral companion courses of bedaquiline, with or without rifapentine, using the validated mouse model of tuberculosis preventive therapy. Methods: After the establishment of a stable Mycobacterium tuberculosis lung infection in bacillus Calmette-Guérin (BCG)-immunized BALB/c mice, treatment was initiated with 1 of 12 randomly assigned regimens. In addition to positive and negative controls, six regimens included one or two injections of long-acting bedaquiline (alone or with oral bedaquiline with or without rifapentine), and four comparator regimens consisted of oral agents only. Lung bacterial burden was measured monthly for up to 28 weeks. Measurements and Main Results: One injection of long-acting bedaquiline at 160 mg/kg exerted antituberculosis activity for 12 weeks. Compared with the positive control (daily isoniazid-rifapentine for 4 wk), six regimens had equivalent bactericidal activity (including two all-oral comparator regimens), and two regimens had superior sterilizing activity: one injection with 2 weeks of oral bedaquiline and high-dose rifapentine; and two injections with 4 weeks of oral bedaquiline. Conclusions: Long-acting injectable bedaquiline has significant potential for shortening tuberculosis preventive therapy.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Antituberculosos/uso terapéutico , Diarilquinolinas/uso terapéutico , Modelos Animales de Enfermedad , Esquema de Medicación , Quimioterapia Combinada , Humanos , Ratones , Tuberculosis/tratamiento farmacológico , Tuberculosis/prevención & control
13.
Am J Respir Crit Care Med ; 205(10): 1228-1235, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35258443

RESUMEN

Rationale: Carbapenems are recommended for treatment of drug-resistant tuberculosis. Optimal dosing remains uncertain. Objectives: To evaluate the 14-day bactericidal activity of meropenem, at different doses, with or without rifampin. Methods: Individuals with drug-sensitive pulmonary tuberculosis were randomized to one of four intravenous meropenem-based arms: 2 g every 8 hours (TID) (arm C), 2 g TID plus rifampin at 20 mg/kg once daily (arm D), 1 g TID (arm E), or 3 g once daily (arm F). All participants received amoxicillin/clavulanate with each meropenem dose. Serial overnight sputum samples were collected from baseline and throughout treatment. Median daily fall in colony-forming unit (CFU) counts per milliliter of sputum (solid culture) (EBACFU0-14) and increase in time to positive culture (TTP) in liquid media were estimated with mixed-effects modeling. Serial blood samples were collected for pharmacokinetic analysis on Day 13. Measurements and Main Results: Sixty participants enrolled. Median EBACFU0-14 counts (2.5th-97.5th percentiles) were 0.22 (0.12-0.33), 0.12 (0.057-0.21), 0.059 (0.033-0.097), and 0.053 (0.035-0.081); TTP increased by 0.34 (0.21-0.75), 0.11 (0.052-0.37), 0.094 (0.034-0.23), and 0.12 (0.04-0.41) (log10 h), for arms C-F, respectively. Meropenem pharmacokinetics were not affected by rifampin coadministration. Twelve participants withdrew early, many of whom cited gastrointestinal adverse events. Conclusions: Bactericidal activity was greater with the World Health Organization-recommended total daily dose of 6 g daily than with a lower dose of 3 g daily. This difference was only detectable with solid culture. Tolerability of intravenous meropenem, with amoxicillin/clavulanate, though, was poor at all doses, calling into question the utility of this drug in second-line regimens. Clinical trial registered with www.clinicaltrials.gov (NCT03174184).


Asunto(s)
Rifampin , Tuberculosis Pulmonar , Amoxicilina/uso terapéutico , Antituberculosos/uso terapéutico , Ácido Clavulánico/uso terapéutico , Quimioterapia Combinada , Humanos , Isoniazida , Meropenem/uso terapéutico , Rifampin/uso terapéutico , Tuberculosis Pulmonar/tratamiento farmacológico
14.
Clin Infect Dis ; 75(Suppl 4): S510-S516, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36410384

RESUMEN

A key component of global tuberculosis (TB) control is the treatment of latent TB infection. The use of long-acting technologies to administer TB preventive treatment has the potential to significantly improve the delivery and impact of this important public health intervention. For example, an ideal long-acting treatment could consist of a single dose that could be administered in the clinic (ie, a "1-shot cure" for latent TB). Interest in long-acting formulations for TB preventive therapy has gained considerable traction in recent years. This article presents an overview of the specific considerations and current preclinical advancements relevant for the development of long-acting technologies of TB drugs for treatment of latent infection, including attributes of target product profiles, suitability of drugs for long-acting formulations, ongoing research efforts, and translation to clinical studies.


Asunto(s)
Tuberculosis Latente , Tuberculosis , Humanos , Tuberculosis Latente/tratamiento farmacológico , Tuberculosis Latente/prevención & control , Tuberculosis/tratamiento farmacológico , Tuberculosis/prevención & control , Profilaxis Antibiótica , Instituciones de Atención Ambulatoria , Salud Pública
15.
Antimicrob Agents Chemother ; 66(4): e0009322, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35311518

RESUMEN

We utilized a CRISPR interference (CRISPRi) assay to control the gene expressions of two predicted essential peptidoglycan biosynthesis genes, pbpB and cwIM, in Mycobacterium abscessus and to evaluate their contribution to ß-lactam susceptibility. Our results showed that CRISPR inhibition of each gene led to a significant 3-log10 reduction in CFU in the presence of imipenem but not for cefoxitin. These results demonstrate that CRISPRi provides an experimental approach to study drug/target interactions in M. abscessus.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Antibacterianos/farmacología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium abscessus/genética , Peptidoglicano/genética , beta-Lactamas/farmacología
16.
Antimicrob Agents Chemother ; 66(3): e0179321, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35099274

RESUMEN

Tuberculosis (TB), the disease caused by Mycobacterium tuberculosis (Mtb), remains a leading infectious disease-related cause of death worldwide, necessitating the development of new and improved treatment regimens. Nonclinical evaluation of candidate drug combinations via the relapsing mouse model (RMM) is an important step in regimen development, through which candidate regimens that provide the greatest decrease in the probability of relapse following treatment in mice may be identified for further development. Although RMM studies are a critical tool to evaluate regimen efficacy, making comprehensive "apples to apples" comparisons of regimen performance in the RMM has been a challenge in large part due to the need to evaluate and adjust for variability across studies arising from differences in design and execution. To address this knowledge gap, we performed a model-based meta-analysis on data for 17 unique regimens obtained from a total of 1592 mice across 28 RMM studies. Specifically, a mixed-effects logistic regression model was developed that described the treatment duration-dependent probability of relapse for each regimen and identified relevant covariates contributing to interstudy variability. Using the model, covariate-normalized metrics of interest, namely, treatment duration required to reach 50% and 10% relapse probability, were derived and used to compare relative regimen performance. Overall, the model-based meta-analysis approach presented herein enabled cross-study comparison of efficacy in the RMM and provided a framework whereby data from emerging studies may be analyzed in the context of historical data to aid in selecting candidate drug combinations for clinical evaluation as TB drug regimens.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Vías Clínicas , Ratones , Recurrencia , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
17.
Antimicrob Agents Chemother ; 66(6): e0053622, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35638855

RESUMEN

Mycobacteroides abscessus (Mab) is an emerging environmental microbe that causes chronic lung disease in patients with compromised lung function such as cystic fibrosis and bronchiectasis. It is intrinsically resistant to most antibiotics, therefore there are only few antibiotics that can be repurposed to treat Mab disease. Although current recommendations require daily intake of multiple antibiotics for more than a year, cure rate is low and often associated with significant adverse events. Here, we describe in vivo efficacy of T405, a recently discovered ß-lactam antibiotic of the penem subclass, in a mouse model of pulmonary Mab infection. Imipenem, one of the standard-of-care drugs to treat Mab disease, and also a ß-lactam antibiotic from a chemical class similar to T405, was included as a comparator. Probenecid was included with both T405 and imipenem to reduce the rate of their renal clearance. T405 exhibited bactericidal activity against Mab from the onset of treatment and reduced Mab lung burden at a rate similar to that exhibited by imipenem. The MIC of T405 against Mab was unaltered after 4 weeks of exposure to T405 in the lungs of mice. Using an in vitro assay, we also demonstrate that T405 in combination with imipenem, cefditoren or avibactam exhibits synergism against Mab. Additionally, we describe a scheme for synthesis and purification of T405 on an industrial scale. These attributes make T405 a promising candidate for further preclinical assessment to treat Mab disease.


Asunto(s)
Imipenem , Infecciones por Mycobacterium no Tuberculosas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cefalosporinas , Humanos , Imipenem/farmacología , Imipenem/uso terapéutico , Meropenem/uso terapéutico , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , beta-Lactamas/uso terapéutico
18.
Antimicrob Agents Chemother ; 66(4): e0239821, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35315690

RESUMEN

A recent landmark trial showed a 4-month regimen of rifapentine, pyrazinamide, moxifloxacin, and isoniazid (PZMH) to be noninferior to the 6-month standard of care. Here, two murine models of tuberculosis were used to test whether novel regimens replacing rifapentine and isoniazid with bedaquiline and another drug would maintain or increase the sterilizing activity of the regimen. In BALB/c mice, replacing rifapentine in the PZM backbone with bedaquiline (i.e., BZM) significantly reduced both lung CFU counts after 1 month and the proportion of mice relapsing within 3 months after completing 1.5 months of treatment. The addition of rifabutin to BZM (BZMRb) further increased the sterilizing activity. In the C3HeB/FeJ mouse model characterized by caseating lung lesions, treatment with BZMRb resulted in significantly fewer relapses than PZMH after 2 months of treatment. A regimen combining the new DprE1 inhibitor OPC-167832 and delamanid (BZOD) also had superior bactericidal and sterilizing activity compared to PZM in BALB/c mice and was similar in efficacy to PZMH in C3HeB/FeJ mice. Thus, BZM represents a promising backbone for treatment-shortening regimens. Given the prohibitive drug-drug interactions between bedaquiline and rifampin or rifapentine, the BZMRb regimen represents the best opportunity to combine, in one regimen, the treatment-shortening potential of the rifamycin class with that of BZM and deserves high priority for evaluation in clinical trials. Other 4-drug BZM-based regimens and BZOD represent promising opportunities for extending the spectrum of treatment-shortening regimens to rifamycin- and fluoroquinolone-resistant tuberculosis.


Asunto(s)
Antibióticos Antituberculosos , Mycobacterium tuberculosis , Tuberculosis , Animales , Antibióticos Antituberculosos/uso terapéutico , Antituberculosos/uso terapéutico , Diarilquinolinas , Modelos Animales de Enfermedad , Esquema de Medicación , Quimioterapia Combinada , Isoniazida/farmacología , Ratones , Ratones Endogámicos BALB C , Moxifloxacino/uso terapéutico , Nitroimidazoles , Oxazoles , Pirazinamida/farmacología , Pirazinamida/uso terapéutico , Rifabutina/uso terapéutico , Tuberculosis/tratamiento farmacológico
19.
Antimicrob Agents Chemother ; 66(4): e0231021, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35311519

RESUMEN

Murine tuberculosis drug efficacy studies have historically monitored bacterial burden based on CFU of Mycobacterium tuberculosis in lung homogenate. In an alternative approach, a recently described molecular pharmacodynamic marker called the RS ratio quantifies drug effect on a fundamental cellular process, ongoing rRNA synthesis. Here, we evaluated the ability of different pharmacodynamic markers to distinguish between treatments in three BALB/c mouse experiments at two institutions. We confirmed that different pharmacodynamic markers measure distinct biological responses. We found that a combination of pharmacodynamic markers distinguishes between treatments better than any single marker. The combination of the RS ratio with CFU showed the greatest ability to recapitulate the rank order of regimen treatment-shortening activity, providing proof of concept that simultaneous assessment of pharmacodynamic markers measuring different properties will enhance insight gained from animal models and accelerate development of new combination regimens. These results suggest potential for a new era in which antimicrobial therapies are evaluated not only on culture-based measures of bacterial burden but also on molecular assays that indicate how drugs impact the physiological state of the pathogen.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Modelos Animales de Enfermedad , Quimioterapia Combinada , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
20.
Antimicrob Agents Chemother ; 66(6): e0013222, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35607978

RESUMEN

As a result of a high-throughput compound screening campaign using Mycobacterium tuberculosis-infected macrophages, a new drug candidate for the treatment of tuberculosis has been identified. GSK2556286 inhibits growth within human macrophages (50% inhibitory concentration [IC50] = 0.07 µM), is active against extracellular bacteria in cholesterol-containing culture medium, and exhibits no cross-resistance with known antitubercular drugs. In addition, it has shown efficacy in different mouse models of tuberculosis (TB) and has an adequate safety profile in two preclinical species. These features indicate a compound with a novel mode of action, although still not fully defined, that is effective against both multidrug-resistant (MDR) or extensively drug-resistant (XDR) and drug-sensitive (DS) M. tuberculosis with the potential to shorten the duration of treatment in novel combination drug regimens. (This study has been registered at ClinicalTrials.gov under identifier NCT04472897).


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Animales , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Macrófagos , Ratones , Pruebas de Sensibilidad Microbiana , Tuberculosis/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA