RESUMEN
The global circulation of newly emerging variants of SARS-CoV-2 is a new threat to public health due to their increased transmissibility and immune evasion. Moreover, currently available vaccines and therapeutic antibodies were shown to be less effective against new variants, in particular, the South African (SA) variant, termed 501Y.V2 or B.1.351. To assess the efficacy of the CT-P59 monoclonal antibody against the SA variant, we sought to perform as in vitro binding and neutralization assays, and in vivo animal studies. CT-P59 neutralized B.1.1.7 variant to a similar extent as to wild type virus. CT-P59 showed reduced binding affinity against a RBD (receptor binding domain) triple mutant containing mutations defining B.1.351 (K417N/E484K/N501Y) also showed reduced potency against the SA variant in live virus and pseudovirus neutralization assay systems. However, in vivo ferret challenge studies demonstrated that a therapeutic dosage of CT-P59 was able to decrease B.1.351 viral load in the upper and lower respiratory tracts, comparable to that observed for the wild type virus. Overall, although CT-P59 showed reduced in vitro neutralizing activity against the SA variant, sufficient antiviral effect in B.1.351-infected animals was confirmed with a clinical dosage of CT-P59, suggesting that CT-P59 has therapeutic potential for COVID-19 patients infected with SA variant.
Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , COVID-19/terapia , COVID-19/virología , Inmunoglobulina G/uso terapéutico , SARS-CoV-2 , Animales , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Modelos Animales de Enfermedad , Femenino , Hurones , Humanos , Inmunoglobulina G/inmunología , Técnicas In Vitro , Pruebas de Neutralización , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Sudáfrica , Carga Viral/inmunologíaRESUMEN
The SARS-CoV-2 variant is rapidly spreading across the world and causes to resurge infections. We previously reported that CT-P59 presented its in vivo potency against Beta variants, despite its reduced activity in cell experiments. Yet, it remains uncertain to exert the antiviral effect of CT-P59 on Gamma, Delta and its associated variants (L452R). To tackle this question, we carried out cell tests and animal studies. CT-P59 showed neutralization against Gamma, Delta, Epsilon, and Kappa variants in cells, with reduced susceptibility. The mouse challenge experiments with Gamma and Delta variants substantiated in vivo potency of CT-P59 showing symptom remission and virus abrogation in the respiratory tract. Collectively, cell and animal studies showed that CT-P59 is effective against Gamma and Delta variants infection, hinting that CT-P59 has therapeutic potential for patients infected with Gamma, Delta and its associated variants.
Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Neutralizantes/farmacología , Tratamiento Farmacológico de COVID-19 , Modelos Animales de Enfermedad , Inmunoglobulina G/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/farmacología , Peso Corporal/efectos de los fármacos , COVID-19/virología , Femenino , Humanos , Ratones Transgénicos , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Análisis de SupervivenciaRESUMEN
We recently published a preliminary assessment of the activity of a poly (ADP-ribose) polymerase (PARP) inhibitor, stenoparib, also known as 2X-121, which inhibits viral replication by affecting pathways of the host. Here we show that stenoparib effectively inhibits a SARS-CoV-2 wild type (BavPat1/2020) strain and four additional variant strains; alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2) and gamma (P.1) in vitro, with 50% effective concentration (EC50) estimates of 4.1 µM, 8.5 µM, 24.1 µM, 8.2 µM and 13.6 µM, respectively. A separate experiment focusing on a combination of 10 µM stenoparib and 0.5 µM remdesivir, an antiviral drug, resulted in over 80% inhibition of the alpha variant, which is substantially greater than the effect achieved with either drug alone, suggesting at least additive effects from combining the different mechanisms of activity of stenoparib and remdesivir.