Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 178(6): 1465-1477.e17, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31491388

RESUMEN

Most human protein-coding genes are regulated by multiple, distinct promoters, suggesting that the choice of promoter is as important as its level of transcriptional activity. However, while a global change in transcription is recognized as a defining feature of cancer, the contribution of alternative promoters still remains largely unexplored. Here, we infer active promoters using RNA-seq data from 18,468 cancer and normal samples, demonstrating that alternative promoters are a major contributor to context-specific regulation of transcription. We find that promoters are deregulated across tissues, cancer types, and patients, affecting known cancer genes and novel candidates. For genes with independently regulated promoters, we demonstrate that promoter activity provides a more accurate predictor of patient survival than gene expression. Our study suggests that a dynamic landscape of active promoters shapes the cancer transcriptome, opening new diagnostic avenues and opportunities to further explore the interplay of regulatory mechanisms with transcriptional aberrations in cancer.


Asunto(s)
Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias/genética , Regiones Promotoras Genéticas/genética , Transcriptoma/genética , Bases de Datos Genéticas , Humanos , RNA-Seq/métodos
2.
Nature ; 578(7793): 102-111, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025015

RESUMEN

The discovery of drivers of cancer has traditionally focused on protein-coding genes1-4. Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium5 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods. For structural variants, we present two methods of driver discovery, and identify regions that are significantly affected by recurrent breakpoints and recurrent somatic juxtapositions. Our analyses confirm previously reported drivers6,7, raise doubts about others and identify novel candidates, including point mutations in the 5' region of TP53, in the 3' untranslated regions of NFKBIZ and TOB1, focal deletions in BRD4 and rearrangements in the loci of AKR1C genes. We show that although point mutations and structural variants that drive cancer are less frequent in non-coding genes and regulatory sequences than in protein-coding genes, additional examples of these drivers will be found as more cancer genomes become available.


Asunto(s)
Genoma Humano/genética , Mutación/genética , Neoplasias/genética , Roturas del ADN , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Mutación INDEL
3.
Nature ; 578(7793): 129-136, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025019

RESUMEN

Transcript alterations often result from somatic changes in cancer genomes1. Various forms of RNA alterations have been described in cancer, including overexpression2, altered splicing3 and gene fusions4; however, it is difficult to attribute these to underlying genomic changes owing to heterogeneity among patients and tumour types, and the relatively small cohorts of patients for whom samples have been analysed by both transcriptome and whole-genome sequencing. Here we present, to our knowledge, the most comprehensive catalogue of cancer-associated gene alterations to date, obtained by characterizing tumour transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)5. Using matched whole-genome sequencing data, we associated several categories of RNA alterations with germline and somatic DNA alterations, and identified probable genetic mechanisms. Somatic copy-number alterations were the major drivers of variations in total gene and allele-specific expression. We identified 649 associations of somatic single-nucleotide variants with gene expression in cis, of which 68.4% involved associations with flanking non-coding regions of the gene. We found 1,900 splicing alterations associated with somatic mutations, including the formation of exons within introns in proximity to Alu elements. In addition, 82% of gene fusions were associated with structural variants, including 75 of a new class, termed 'bridged' fusions, in which a third genomic location bridges two genes. We observed transcriptomic alteration signatures that differ between cancer types and have associations with variations in DNA mutational signatures. This compendium of RNA alterations in the genomic context provides a rich resource for identifying genes and mechanisms that are functionally implicated in cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , ARN/genética , Variaciones en el Número de Copia de ADN , ADN de Neoplasias , Genoma Humano , Genómica , Humanos , Transcriptoma
4.
Neurobiol Dis ; 195: 106500, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614275

RESUMEN

Spinal Cord Injury (SCI) disrupts critical autonomic pathways responsible for the regulation of the immune function. Consequently, individuals with SCI often exhibit a spectrum of immune dysfunctions ranging from the development of damaging pro-inflammatory responses to severe immunosuppression. Thus, it is imperative to gain a more comprehensive understanding of the extent and mechanisms through which SCI-induced autonomic dysfunction influences the immune response. In this review, we provide an overview of the anatomical organization and physiology of the autonomic nervous system (ANS), elucidating how SCI impacts its function, with a particular focus on lymphoid organs and immune activity. We highlight recent advances in understanding how intraspinal plasticity that follows SCI may contribute to aberrant autonomic activity in lymphoid organs. Additionally, we discuss how sympathetic mediators released by these neuron terminals affect immune cell function. Finally, we discuss emerging innovative technologies and potential clinical interventions targeting the ANS as a strategy to restore the normal regulation of the immune response in individuals with SCI.


Asunto(s)
Vías Autónomas , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/inmunología , Traumatismos de la Médula Espinal/fisiopatología , Humanos , Animales , Vías Autónomas/inmunología , Sistema Nervioso Autónomo/fisiopatología , Sistema Nervioso Autónomo/inmunología
5.
Magn Reson Med ; 92(2): 741-750, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38523462

RESUMEN

PURPOSE: To develop an open-source prototype of myocardial T1 mapping (Open-MOLLI) to improve accessibility to cardiac T1 mapping and evaluate its repeatability. With Open-MOLLI, we aim to enable faster implementation and testing of sequence modifications and to facilitate inter-scanner and cross-vendor reproducibility studies. METHODS: Open-MOLLI is an inversion-recovery sequence using a balanced SSFP (bSSFP) readout, with inversion and triggering schemes based on the 5(3)3 MOLLI sequence, developed in Pulseq. Open-MOLLI and MOLLI sequences were acquired in the ISMRM/NIST phantom and 21 healthy volunteers. In 18 of those subjects, Open-MOLLI and MOLLI were repeated in the same session (test-retest). RESULTS: Phantom T1 values were comparable between methods, specifically for the vial with reference T1 value most similar to healthy myocardium T1 (T1vial3 = 1027 ms): T1MOLLI = 1011 ± 24 ms versus T1Open-MOLLI = 1009 ± 20 ms. In vivo T1 estimates were similar between Open-MOLLI and MOLLI (T1MOLLI = 1004 ± 33 ms vs. T1Open-MOLLI = 998 ± 52 ms), with a mean difference of -17 ms (p = 0.20), despite noisier Open-MOLLI weighted images and maps. Repeatability measures were slightly higher for Open-MOLLI (RCMOLLI = 3.0% vs. RCOpen-MOLLI = 4.4%). CONCLUSION: The open-source sequence Open-MOLLI can be used for T1 mapping in vivo with similar mean T1 values to the MOLLI method. Open-MOLLI increases the accessibility to cardiac T1 mapping, providing also a base sequence to which further improvements can easily be added and tested.


Asunto(s)
Fantasmas de Imagen , Humanos , Reproducibilidad de los Resultados , Adulto , Masculino , Femenino , Algoritmos , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Adulto Joven , Miocardio
6.
J Exp Bot ; 75(1): 274-299, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37804484

RESUMEN

Catharanthus roseus leaves produce a range of monoterpenoid indole alkaloids (MIAs) that include low levels of the anticancer drugs vinblastine and vincristine. The MIA pathway displays a complex architecture spanning different subcellular and cell type localizations, and is under complex regulation. As a result, the development of strategies to increase the levels of the anticancer MIAs has remained elusive. The pathway involves mesophyll specialized idioblasts where the late unsolved biosynthetic steps are thought to occur. Here, protoplasts of C. roseus leaf idioblasts were isolated by fluorescence-activated cell sorting, and their differential alkaloid and transcriptomic profiles were characterized. This involved the assembly of an improved C. roseus transcriptome from short- and long-read data, IDIO+. It was observed that C. roseus mesophyll idioblasts possess a distinctive transcriptomic profile associated with protection against biotic and abiotic stresses, and indicative that this cell type is a carbon sink, in contrast to surrounding mesophyll cells. Moreover, it is shown that idioblasts are a hotspot of alkaloid accumulation, suggesting that their transcriptome may hold the key to the in-depth understanding of the MIA pathway and the success of strategies leading to higher levels of the anticancer drugs.


Asunto(s)
Antineoplásicos , Catharanthus , Plantas Medicinales , Alcaloides de Triptamina Secologanina , Plantas Medicinales/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Antineoplásicos/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Phys Rev Lett ; 132(11): 118201, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38563942

RESUMEN

Self-folding is an emerging paradigm for the inverse design of three-dimensional structures. While most efforts have concentrated on the shape of the net, our approach introduces a new design dimension-bond specificity between the edges. We transform this design process into a Boolean satisfiability problem to derive solutions for various target structures. This method significantly enhances the yield of the folding process. Furthermore, by linearly combining independent solutions, we achieve designs for shape-shifting nets wherein the dominant structure evolves with varying external conditions. This approach is demonstrated through coarse-grained simulations on two examples of triangular and square nets capable of folding into multiple target shapes.

8.
Soft Matter ; 20(28): 5583-5591, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38973372

RESUMEN

Sand is a highly dissipative system, where the local spatial arrangements and densities depend strongly on the applied forces, resulting in fluid-like or solid-like behaviour. This makes sand swimming challenging and intriguing, raising questions about the nature of the motion and how to optimize the design of artificial swimmers able to swim in sand. Recent experiments suggest that lateral undulatory motion enables efficient locomotion, with a non-monotonic dependence of the swimming speed on the undulatory frequency and the height of the sediment bed. Here, we propose a 2D granular model, where the effect of the sediment height is modeled by an effective frictional force with the substrate. We show that the optimal frequency coincides with the second vibrational mode of the swimmer and explain the underlying mechanism through a characterization of the rheology of the medium. Potential implications in the design of artificial swimmers are discussed.

9.
Soft Matter ; 20(11): 2419-2441, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38420837

RESUMEN

With the rapid development of studies involving droplet microfluidics, drug delivery, cell detection, and microparticle synthesis, among others, many scientists have invested significant efforts to model the flow of these fluid-filled bodies. Motivated by the intricate coupling between hydrodynamics and the interactions of fluid-filled bodies, several methods have been developed. The objective of this review is to present a compact foundation of the methods used in the literature in the context of lattice Boltzmann methods. For hydrodynamics, we focus on the lattice Boltzmann method due to its specific ability to treat time- and spatial-dependent boundary conditions and to incorporate new physical models in a computationally efficient way. We split the existing methods into two groups with regard to the interfacial boundary: fluid-structure and fluid-fluid methods. The fluid-structure methods are characterised by the coupling between fluid dynamics and mechanics of the flowing body, often used in applications involving membranes and similar flexible solid boundaries. We further divide fluid-structure-based methods into two subcategories, those which treat the fluid-structure boundary as a continuum medium and those that treat it as a discrete collection of individual springs and particles. Next, we discuss the fluid-fluid methods, particularly useful for the simulations of fluid-fluid interfaces. We focus on models for immiscible droplets and their interaction in a suspending fluid and describe benchmark tests to validate the models for fluid-filled bodies.

10.
Soft Matter ; 20(5): 1114-1119, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38224143

RESUMEN

Kirigami-inspired designs can enable self-folding three-dimensional materials from flat, two-dimensional sheets. Hierarchical designs of connected levels increase the diversity of possible target structures, yet they can lead to longer folding times in the presence of fluctuations. Here, we study the effect of rotational coupling between levels on the self-folding of two-level kirigami designs driven by thermal noise in a fluid. Naturally present due to hydrodynamic resistance, we find that this coupling parameter can significantly impact a structure's self-folding pathway, thus enabling us to assess the quality of a kirigami design and the possibility for its optimization in terms of its folding rate and yield.

13.
MAGMA ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393541

RESUMEN

OBJECTIVE: Diffusional kurtosis imaging (DKI) extends diffusion tensor imaging (DTI), characterizing non-Gaussian diffusion effects but requires longer acquisition times. To ensure the robustness of DKI parameters, data acquisition ordering should be optimized allowing for scan interruptions or shortening. Three methodologies were used to examine how reduced diffusion MRI scans impact DKI histogram-metrics: 1) the electrostatic repulsion model (OptEEM); 2) spherical codes (OptSC); 3) random (RandomTRUNC). MATERIALS AND METHODS: Pre-acquired diffusion multi-shell data from 14 female healthy volunteers (29±5 years) were used to generate reordered data. For each strategy, subsets containing different amounts of the full dataset were generated. The subsampling effects were assessed on histogram-based DKI metrics from tract-based spatial statistics (TBSS) skeletonized maps. To evaluate each subsampling method on simulated data at different SNRs and the influence of subsampling on in vivo data, we used a 3-way and 2-way repeated measures ANOVA, respectively. RESULTS: Simulations showed that subsampling had different effects depending on DKI parameter, with fractional anisotropy the most stable (up to 5% error) and radial kurtosis the least stable (up to 26% error). RandomTRUNC performed the worst while the others showed comparable results. Furthermore, the impact of subsampling varied across distinct histogram characteristics, the peak value the least affected (OptEEM: up to 5% error; OptSC: up to 7% error) and peak height (OptEEM: up to 8% error; OptSC: up to 11% error) the most affected. CONCLUSION: The impact of truncation depends on specific histogram-based DKI metrics. The use of a strategy for optimizing the acquisition order is advisable to improve DKI robustness to exam interruptions.

14.
BMC Med Inform Decis Mak ; 24(1): 95, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622703

RESUMEN

This study presents a workflow for identifying and characterizing patients with Heart Failure (HF) and multimorbidity utilizing data from Electronic Health Records. Multimorbidity, the co-occurrence of two or more chronic conditions, poses a significant challenge on healthcare systems. Nonetheless, understanding of patients with multimorbidity, including the most common disease interactions, risk factors, and treatment responses, remains limited, particularly for complex and heterogeneous conditions like HF. We conducted a clustering analysis of 3745 HF patients using demographics, comorbidities, laboratory values, and drug prescriptions. Our analysis revealed four distinct clusters with significant differences in multimorbidity profiles showing differential prognostic implications regarding unplanned hospital admissions. These findings underscore the considerable disease heterogeneity within HF patients and emphasize the potential for improved characterization of patient subgroups for clinical risk stratification through the use of EHR data.


Asunto(s)
Insuficiencia Cardíaca , Multimorbilidad , Humanos , Comorbilidad , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/epidemiología , Análisis por Conglomerados , Enfermedad Crónica
15.
Sensors (Basel) ; 24(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38793904

RESUMEN

Underwater long-endurance platforms are crucial for continuous oceanic observation, allowing for sustained data collection from a multitude of sensors deployed across diverse underwater environments. They extend mission durations, reduce maintenance needs, and significantly improve the efficiency and cost-effectiveness of oceanographic research endeavors. This paper investigates the closed-loop depth control of actuation systems employed in underwater vehicles, focusing on the energy consumption of two different mechanisms: variable buoyancy and propeller actuated devices. Using a prototype previously developed by the authors, this paper presents a detailed model of the vehicle using both actuation solutions. The proposed model, although being a linear-based one, accounts for several nonlinearities that are present such as saturations, sensor quantization, and the actuator brake model. Also, it allows a simple estimation of the energy consumption of both actuation solutions. Based on the developed models, this study then explores the intricate interplay between energy consumption and control accuracy. To this end, several PID-based controllers are developed and tested in simulation. These controllers are used to evaluate the dynamic response and power requirements of variable buoyancy systems and propeller actuated devices under various operational conditions. Our findings contribute to the optimization of closed-loop depth control strategies, offering insights into the trade-offs between energy efficiency and system effectiveness in diverse underwater applications.

16.
J Allergy Clin Immunol ; 151(6): 1646-1654, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36716825

RESUMEN

BACKGROUND: Increased prevalence of autoantibody Fab glycosylation has been demonstrated for several autoimmune diseases. OBJECTIVES: To study whether elevated Fab glycosylation is a common feature of autoimmunity, this study investigated Fab glycosylation levels on serum IgG and its subclasses for autoantibodies associated with a range of different B cell-mediated autoimmune diseases, including rheumatoid arthritis, myasthenia gravis subtypes, pemphigus vulgaris, antineutrophil cytoplasmic antibody-associated vasculitis, systemic lupus erythematosus, anti-glomerular basement membrane glomerulonephritis, thrombotic thrombocytopenic purpura, and Guillain-Barré syndrome. METHODS: The level of Fab glycosylated IgG antibodies was assessed by lectin affinity chromatography and autoantigen-specific immunoassays. RESULTS: In 6 of 10 autoantibody responses, in 5 of 8 diseases, the investigators found increased levels of Fab glycosylation on IgG autoantibodies that varied from 86% in rheumatoid arthritis to 26% in systemic lupus erythematosus. Elevated autoantibody Fab glycosylation was not restricted to IgG4, which is known to be prone to Fab glycosylation, but was also present in IgG1. When autoimmune diseases with a chronic disease course were compared with more acute autoimmune illnesses, increased Fab glycosylation was restricted to the chronic diseases. As a proxy for chronic autoantigen exposure, the investigators determined Fab glycosylation levels on antibodies to common latent herpes viruses, as well as to glycoprotein 120 in individuals who are chronically HIV-1-infected. Immunity to these viral antigens was not associated with increased Fab glycosylation levels, indicating that chronic antigen-stimulation as such does not lead to increased Fab glycosylation levels. CONCLUSIONS: These data indicate that in chronic but not acute B cell-mediated autoimmune diseases, disease-specific autoantibodies are enriched for Fab glycans.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Miastenia Gravis , Humanos , Autoanticuerpos , Inmunoglobulina G , Autoantígenos
17.
Magn Reson Med ; 90(2): 539-551, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37036367

RESUMEN

PURPOSE: Enabling fast and accessible myocardial T1 mapping is crucial for extending its clinical application. We introduce Open-MOLLI-SMS combining simultaneous multi-slice (SMS) with auto-calibration and variable-rate selective excitation (VERSE)-multiband pulses to obtain all slices in a fast single-shot T1 mapping sequence. METHODS: Open-MOLLI-SMS was developed by integrating SMS with the open-source method Open-MOLLI previously implemented in Pulseq. Three methods were integrated for Open-MOLLI-SMS: (1) auto-calibration blip patterns to ensure consistency between the data and coil information; (2) a blipped-balanced SSFP (bSSFP) readout to induce controlled aliasing in parallel imaging shifts without disturbing the bSSFP frequency response; and (3) a VERSE-multiband pulse for minimizing the achievable TR and the specific absortion rate (SAR) impact of SMS. Two (SMS2) or three (SMS3) slices were excited simultaneously and encoded with an in-plane acceleration factor of 2. Experiments were performed in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom and five healthy volunteers. RESULTS: Phantom results show accurate T1 estimates for reference values between 400 to 2200 ms. Artifacts were visible for Open-MOLLI-SMS3 but not replicated in vivo. In vivo Open-MOLLI-SMS (T1 SMS2 = 993 ± 10 ms; T1 SMS3 = 1031 ± 17 ms) provided similar values to mean T1 single-band Open-MOLLI estimates (T1 Open-MOLLI = 1005 ± 47 ms). Open-MOLLI-SMS2 provided the closest estimates to the reference. CONCLUSION: This proof-of-principle implementation study demonstrates the feasibility of speeding up T1 -mapping acquisitions and increasing coverage by combining auto-calibration strategies with a blipped-bSFFP readout and VERSE multiband RF excitation pulses. The proposed methodology was built on the Open-MOLLI mapping sequence, which provides a fast means for prototyping and enables open-source sharing of the method.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Miocardio , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen , Aceleración , Reproducibilidad de los Resultados , Corazón/diagnóstico por imagen
18.
Hepatology ; 76(6): 1617-1633, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35030285

RESUMEN

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) includes a heterogeneous group of biliary cancers with a dismal prognosis. We investigated if lipid metabolism is disrupted in CCA and its role in tumor proliferation. APPROACH AND RESULTS: The in vitro and in vivo tumorigenic capacity of five human CCA cell lines was analyzed. Proteome, lipid content, and metabolic fluxes were evaluated in CCA cells and compared with normal human cholangiocytes (NHC). The Akt1/NOTCH1 intracellular cytoplasmic domain (Nicd1)-driven CCA mouse model was also evaluated. The proteome of CCA cells was enriched in pathways involved in lipid and lipoprotein metabolism. The EGI1 CCA cell line presented the highest tumorigenic capacity. Metabolic studies in high (EGI1) versus low (HUCCT1) proliferative CCA cells in vitro showed that both EGI1 and HUCCT1 incorporated more fatty acids (FA) than NHC, leading to increased triglyceride storage, also observed in Akt1/Nicd1-driven CCA mouse model. The highly proliferative EGI1 CCA cells showed greater uptake of very-low-density and HDLs than NHC and HUCCT1 CCA cells and increased cholesteryl ester content. The FA oxidation (FAO) and related proteome enrichment were specifically up-regulated in EGI1, and consequently, pharmacological blockade of FAO induced more pronounced inhibition of their tumorigenic capacity compared with HUCCT1. The expression of acyl-CoA dehydrogenase ACADM, the first enzyme involved in FAO, was increased in human CCA tissues and correlated with the proliferation marker PCNA. CONCLUSIONS: Highly proliferative human CCA cells rely on lipid and lipoprotein uptake to fuel FA catabolism, suggesting that inhibition of FAO and/or lipid uptake could represent a therapeutic strategy for this CCA subclass.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Ratones , Animales , Humanos , Proteoma , Línea Celular Tumoral , Colangiocarcinoma/patología , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Lípidos/uso terapéutico , Proliferación Celular
19.
Blood ; 137(19): 2694-2698, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33544829

RESUMEN

Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is an autoimmune disorder caused by the development of autoantibodies targeting different domains of ADAMTS13. Profiling studies have shown that residues R568, F592, R660, Y661, and Y665 within exosite-3 of the spacer domain provide an immunodominant region of ADAMTS13 for pathogenic autoantibodies that develop in patients with iTTP. Modification of these 5 core residues with the goal of reducing autoantibody binding revealed a significant tradeoff between autoantibody resistance and proteolytic activity. Here, we employed structural bioinformatics to identify a larger epitope landscape on the ADAMTS13 spacer domain. Models of spacer-antibody complexes predicted that residues R568, L591, F592, K608, M609, R636, L637, R639, R660, Y661, Y665, and L668 contribute to an expanded epitope within the spacer domain. Based on bioinformatics-guided predictions, we designed a panel of N-glycan insertions in this expanded epitope to reduce the binding of spacer domain autoantibodies. One N-glycan variant (NGLY3-ADAMTS13, containing a K608N substitution) showed strongly reduced reactivity with TTP patient sera (28%) as compared with WT-ADAMTS13 (100%). Insertion of an N-glycan at amino acid position 608 did not interfere with processing of von Willebrand factor, positioning the resulting NGLY3-ADAMTS13 variant as a potential novel therapeutic option for treatment of iTTP.


Asunto(s)
Proteína ADAMTS13/inmunología , Complejo Antígeno-Anticuerpo/química , Reacciones Antígeno-Anticuerpo , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Polisacáridos/inmunología , Púrpura Trombocitopénica Trombótica/inmunología , Proteína ADAMTS13/química , Proteína ADAMTS13/metabolismo , Sustitución de Aminoácidos , Aminoácidos , Anticuerpos Monoclonales/inmunología , Complejo Antígeno-Anticuerpo/inmunología , Autoanticuerpos/metabolismo , Autoantígenos/química , Autoantígenos/metabolismo , Epítopos/inmunología , Epítopos/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Factor de von Willebrand/metabolismo
20.
Chemistry ; 29(44): e202301221, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37213129

RESUMEN

Different oxidative pathways of sulfur dioxide promoted by ZnO(NO3 )2 - , Zn(NO3 )2 - and Zn(NO2 )(NO3 )- are revealed by a joint investigation by mass spectrometry and theoretical calculations. The reactions are triggered by [Zn2+ -O- ⋅]+ or by the low-valence Zn+ through oxygen ion transfer or electron transfer to SO2 , respectively. The NOx - ligands intervene in the oxidation only when sulfur dioxide is converted to SO3 - or SO2 - , leading to the formation of zinc sulfate and zinc sulfite coordinated to nitrate or nitrite anions. Kinetic analyses show that the reactions are fast and efficient, and theory discloses the elementary steps, namely oxygen ion transfer, oxygen atom transfer and electron transfer, occurring through similar energy landscapes for the three reactive anions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA