Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 19(1): 262, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31208336

RESUMEN

BACKGROUND: Stored potato (Solanum tuberosum L.) tubers are sensitive to wet conditions that can cause rotting in long-term storage. To study the effect of water on the tuber surface during storage, microarray analysis, RNA-Seq profiling, qRT-PCR and phytohormone measurements were performed to study gene expression and hormone content in wet tubers incubated at two temperatures: 4 °C and 15 °C. The growth of the plants was also observed in a greenhouse after the incubation of tubers in wet conditions. RESULTS: Wet conditions induced a low-oxygen response, suggesting reduced oxygen availability in wet tubers at both temperatures when compared to that in the corresponding dry samples. Wet conditions induced genes coding for heat shock proteins, as well as proteins involved in fermentative energy production and defense against reactive oxygen species (ROS), which are transcripts that have been previously associated with low-oxygen stress in hypoxic or anoxic conditions. Wet treatment also induced senescence-related gene expression and genes involved in cell wall loosening, but downregulated genes encoding protease inhibitors and proteins involved in chloroplast functions and in the biosynthesis of secondary metabolites. Many genes involved in the production of phytohormones and signaling were also affected by wet conditions, suggesting altered regulation of growth by wet conditions. Hormone measurements after incubation showed increased salicylic acid (SA), abscisic acid (ABA) and auxin (IAA) concentrations as well as reduced production of jasmonate 12-oxo-phytodienoic acid (OPDA) in wet tubers. After incubation in wet conditions, the tubers produced fewer stems and more roots compared to controls incubated in dry conditions. CONCLUSIONS: In wet conditions, tubers invest in ROS protection and defense against the abiotic stress caused by reduced oxygen due to excessive water. Changes in ABA, SA and IAA that are antagonistic to jasmonates affect growth and defenses, causing induction of root growth and rendering tubers susceptible to necrotrophic pathogens. Water on the tuber surface may function as a signal for growth, similar to germination of seeds.


Asunto(s)
Almacenamiento de Alimentos , Reguladores del Crecimiento de las Plantas/metabolismo , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Metabolismo de los Hidratos de Carbono , Pared Celular/metabolismo , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo , Tubérculos de la Planta/crecimiento & desarrollo , Metabolismo Secundario , Solanum tuberosum/crecimiento & desarrollo , Transcriptoma , Agua
2.
BMC Microbiol ; 19(1): 65, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30898089

RESUMEN

BACKGROUND: Quantification of viable microorganisms is an important step in microbiological research as well as in microbial product formulation to develop biological control products or probiotics. Often, the efficiency of the resulting product is dependent on the microbial cell density and their viability, which may decrease over time. Commonly, the number of viable cells is determined by serial dilution and plating techniques or flow cytometry. In 2017, we developed a mathematical model for isothermal microcalorimetry (IMC) data analysis and showed that the new method allows for a more rapid quantification of viable fresh and freeze-dried anaerobic Lactobacillus reuteri cells than traditional viable count methods. RESULTS: This study developed the new method further by applying it to well-known aerophilic plant-beneficial microbial species (Pseudomonas brassicacearum, Bacillus amyloliquefaciens subsp. plantarum and Clonostachys rosea) used in biological control products. We utilized IMC to quantify viable cells in microbial pure cultures as well as when coated onto wheat seeds. The results from this study confirmed that thermal viable count methods are more rapid and sensitive than traditional viable count techniques. Most interestingly, a thermal viable count method was able to quantify microbes coated on seeds despite the presence of the natural microbiota of the seeds. Our results also showed that, in contrast to plating techniques for which clustered cells skew the results, IMC does not require single cells for accurate viable counts. CONCLUSIONS: Thermal viable count methods are novel methods for the rapid quantification of divergent bacterial and fungal species and enhance the speed, sensitivity, and accuracy of routine viable counts of pure cultures and controlled microbiomes such as plant seed coatings.


Asunto(s)
Bacterias/aislamiento & purificación , Calorimetría/métodos , Recuento de Colonia Microbiana/métodos , Viabilidad Microbiana , Modelos Teóricos , Temperatura , Anaerobiosis , Citometría de Flujo , Congelación , Limosilactobacillus reuteri/aislamiento & purificación , Reproducibilidad de los Resultados , Semillas/microbiología , Sensibilidad y Especificidad
3.
PLoS Pathog ; 8(11): e1003013, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23133391

RESUMEN

Soft rot disease is economically one of the most devastating bacterial diseases affecting plants worldwide. In this study, we present novel insights into the phylogeny and virulence of the soft rot model Pectobacterium sp. SCC3193, which was isolated from a diseased potato stem in Finland in the early 1980s. Genomic approaches, including proteome and genome comparisons of all sequenced soft rot bacteria, revealed that SCC3193, previously included in the species Pectobacterium carotovorum, can now be more accurately classified as Pectobacterium wasabiae. Together with the recently revised phylogeny of a few P. carotovorum strains and an increasing number of studies on P. wasabiae, our work indicates that P. wasabiae has been unnoticed but present in potato fields worldwide. A combination of genomic approaches and in planta experiments identified features that separate SCC3193 and other P. wasabiae strains from the rest of soft rot bacteria, such as the absence of a type III secretion system that contributes to virulence of other soft rot species. Experimentally established virulence determinants include the putative transcriptional regulator SirB, two partially redundant type VI secretion systems and two horizontally acquired clusters (Vic1 and Vic2), which contain predicted virulence genes. Genome comparison also revealed other interesting traits that may be related to life in planta or other specific environmental conditions. These traits include a predicted benzoic acid/salicylic acid carboxyl methyltransferase of eukaryotic origin. The novelties found in this work indicate that soft rot bacteria have a reservoir of unknown traits that may be utilized in the poorly understood latent stage in planta. The genomic approaches and the comparison of the model strain SCC3193 to other sequenced Pectobacterium strains, including the type strain of P. wasabiae, provides a solid basis for further investigation of the virulence, distribution and phylogeny of soft rot bacteria and, potentially, other bacteria as well.


Asunto(s)
Transferencia de Gen Horizontal , Familia de Multigenes , Pectobacterium/genética , Pectobacterium/patogenicidad , Filogenia , Enfermedades de las Plantas/genética , Factores de Virulencia/genética , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Solanum tuberosum/microbiología , Factores de Virulencia/metabolismo
4.
J Bacteriol ; 194(21): 6004, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23045508

RESUMEN

We report the complete and annotated genome sequence of the plant-pathogenic enterobacterium Pectobacterium sp. strain SCC3193, a model strain isolated from potato in Finland. The Pectobacterium sp. SCC3193 genome consists of a 5,164,411-bp [corrected] chromosome, with no plasmids.


Asunto(s)
ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Pectobacterium/genética , Análisis de Secuencia de ADN , Finlandia , Datos de Secuencia Molecular , Pectobacterium/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología
5.
Stand Genomic Sci ; 12: 87, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29276572

RESUMEN

Bacteria of the genus Pectobacterium are economically important plant pathogens that cause soft rot disease on a wide variety of plant species. Here, we report the genome sequence of Pectobacterium carotovorum strain SCC1, a Finnish soft rot model strain isolated from a diseased potato tuber in the early 1980's. The genome of strain SCC1 consists of one circular chromosome of 4,974,798 bp and one circular plasmid of 5524 bp. In total 4451 genes were predicted, of which 4349 are protein coding and 102 are RNA genes.

6.
PLoS One ; 8(9): e73718, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24040039

RESUMEN

In this study, we characterized a putative Flp/Tad pilus-encoding gene cluster, and we examined its regulation at the transcriptional level and its role in the virulence of potato pathogenic enterobacteria of the genus Pectobacterium. The Flp/Tad pilus-encoding gene clusters in Pectobacterium atrosepticum, Pectobacterium wasabiae and Pectobacterium aroidearum were compared to previously characterized flp/tad gene clusters, including that of the well-studied Flp/Tad pilus model organism Aggregatibacter actinomycetemcomitans, in which this pilus is a major virulence determinant. Comparative analyses revealed substantial protein sequence similarity and open reading frame synteny between the previously characterized flp/tad gene clusters and the cluster in Pectobacterium, suggesting that the predicted flp/tad gene cluster in Pectobacterium encodes a Flp/Tad pilus-like structure. We detected genes for a novel two-component system adjacent to the flp/tad gene cluster in Pectobacterium, and mutant analysis demonstrated that this system has a positive effect on the transcription of selected Flp/Tad pilus biogenesis genes, suggesting that this response regulator regulate the flp/tad gene cluster. Mutagenesis of either the predicted regulator gene or selected Flp/Tad pilus biogenesis genes had a significant impact on the maceration ability of the bacterial strains in potato tubers, indicating that the Flp/Tad pilus-encoding gene cluster represents a novel virulence determinant in Pectobacterium. Soft-rot enterobacteria in the genera Pectobacterium and Dickeya are of great agricultural importance, and an investigation of the virulence of these pathogens could facilitate improvements in agricultural practices, thus benefiting farmers, the potato industry and consumers.


Asunto(s)
Proteínas Bacterianas/genética , Fimbrias Bacterianas/genética , Familia de Multigenes , Pectobacterium/genética , Aggregatibacter actinomycetemcomitans/genética , Aggregatibacter actinomycetemcomitans/patogenicidad , Aggregatibacter actinomycetemcomitans/fisiología , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Biopelículas/crecimiento & desarrollo , Fimbrias Bacterianas/fisiología , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Pectobacterium/patogenicidad , Pectobacterium/fisiología , Enfermedades de las Plantas/microbiología , Tubérculos de la Planta/microbiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico , Solanum tuberosum/microbiología , Transcriptoma , Virulencia/genética
7.
Microbiology (Reading) ; 154(Pt 8): 2387-2396, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18667571

RESUMEN

Pectobacterium atrosepticum is a Gram-negative plant-pathogenic bacterium that rots potato stems and tubers. Microarray analysis was used to identify genes that were differentially expressed when host extracts were added to the growth medium. Potato extracts downregulated the expression of ribosomal genes and genes related to uptake and metabolism of nutrients, and upregulated genes needed for nitrate or phosphonate use. Some of the observed changes in gene expression in host-extract-induced cultures are similar to those during attachment of the bacterium to host tissues. Other responses indicated defence against toxic metabolites in the extract. Tuber extract induced a large gene cluster having homology to type VI secretion genes shown to be virulence determinants in many, but not all, animal and human pathogens. Two of the genes in the type VI cluster were found to be expressed during infection in potato tubers and stems, and mutants with knockouts of the corresponding genes had increased virulence on potato. One of the type VI secretion mutants was further characterized and found to grow to higher cell density in culture in the presence of host extract and to produce slightly more extracellular tissue-macerating enzymes than the wild-type strain. Analysis of secreted proteins showed that this type VI mutant was affected in the production of haemolysin-coregulated proteins (Hcps), which have been suggested to be secreted by the type VI pathway in other bacteria. The results suggest that the type VI secretion system of P. atrosepticum is needed for secretion of Hcps but not for virulence on its host plant, potato.


Asunto(s)
Proteínas Bacterianas/genética , Interacciones Huésped-Patógeno , Familia de Multigenes , Pectobacterium carotovorum/genética , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Proteínas Bacterianas/metabolismo , Transporte Biológico , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Pectobacterium carotovorum/metabolismo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA