Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Brain ; 146(10): 4200-4216, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37163662

RESUMEN

Filamin-A-interacting protein 1 (FILIP1) is a structural protein that is involved in neuronal and muscle function and integrity and interacts with FLNa and FLNc. Pathogenic variants in filamin-encoding genes have been linked to neurological disorders (FLNA) and muscle diseases characterized by myofibrillar perturbations (FLNC), but human diseases associated with FILIP1 variants have not yet been described. Here, we report on five patients from four unrelated consanguineous families with homozygous FILIP1 variants (two nonsense and two missense). Functional studies indicated altered stability of the FILIP1 protein carrying the p.[Pro1133Leu] variant. Patients exhibit a broad spectrum of neurological symptoms including brain malformations, neurodevelopmental delay, muscle weakness and pathology and dysmorphic features. Electron and immunofluorescence microscopy on the muscle biopsy derived from the patient harbouring the homozygous p.[Pro1133Leu] missense variant revealed core-like zones of myofibrillar disintegration, autophagic vacuoles and accumulation of FLNc. Proteomic studies on the fibroblasts derived from the same patient showed dysregulation of a variety of proteins including FLNc and alpha-B-crystallin, a finding (confirmed by immunofluorescence) which is in line with the manifestation of symptoms associated with the syndromic phenotype of FILIP1opathy. The combined findings of this study show that the loss of functional FILIP1 leads to a recessive disorder characterized by neurological and muscular manifestations as well as dysmorphic features accompanied by perturbed proteostasis and myopathology.


Asunto(s)
Enfermedades Musculares , Proteómica , Humanos , Filaminas/genética , Mutación/genética , Enfermedades Musculares/genética , Debilidad Muscular , Proteínas Portadoras/genética , Proteínas del Citoesqueleto/genética
2.
Biochem Cell Biol ; 101(4): 326-360, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37040564

RESUMEN

Graduate students are vital to the creation of research and innovation in Canada. The National Graduate Student Finance Survey was launched in 2021 by the Ottawa Science Policy Network to investigate the financial realities of Canadian graduate students. Closing in April 2022, the survey received 1305 responses from graduate students representing various geographical locations, years of study, fields of education, and demographic backgrounds. The results capture a snapshot into graduate student finances, including an in-depth analysis of stipends, scholarships, debt, tuition, and living expenses. In its entirety, we found that the majority of graduate students are facing serious financial concerns. This is largely due to stagnant funding for students both from federal and provincial granting agencies and from within their institutions. This reality is even worse for international students, members of historically underrepresented communities, and those with dependents, all of whom experience additional challenges that impact their financial security. Based on our findings, we propose several recommendations to the Tri-Council agencies (Natural Sciences and Engineering Research Council, Social Science and Humanities Research Council, and Canadian Institute for Health Research) and academic institutions to strengthen graduate student finances and help sustain the future of research in Canada.


Asunto(s)
Estrés Financiero , Estudiantes , Humanos , Canadá
3.
Int J Mol Sci ; 24(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239850

RESUMEN

Congenital myasthenic syndromes (CMS) are a group of rare, neuromuscular disorders that usually present in childhood or infancy. While the phenotypic presentation of these disorders is diverse, the unifying feature is a pathomechanism that disrupts neuromuscular transmission. Recently, two mitochondrial genes-SLC25A1 and TEFM-have been reported in patients with suspected CMS, prompting a discussion about the role of mitochondria at the neuromuscular junction (NMJ). Mitochondrial disease and CMS can present with similar symptoms, and potentially one in four patients with mitochondrial myopathy exhibit NMJ defects. This review highlights research indicating the prominent roles of mitochondria at both the pre- and postsynapse, demonstrating the potential for mitochondrial involvement in neuromuscular transmission defects. We propose the establishment of a novel subcategorization for CMS-mitochondrial CMS, due to unifying clinical features and the potential for mitochondrial defects to impede transmission at the pre- and postsynapse. Finally, we highlight the potential of targeting the neuromuscular transmission in mitochondrial disease to improve patient outcomes.


Asunto(s)
Enfermedades Mitocondriales , Síndromes Miasténicos Congénitos , Transportadores de Anión Orgánico , Humanos , Síndromes Miasténicos Congénitos/genética , Unión Neuromuscular/genética , Sinapsis , Mutación , Proteínas Mitocondriales/genética , Transportadores de Anión Orgánico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA