Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Protein Expr Purif ; 70(1): 13-22, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19836452

RESUMEN

AMP-activated protein kinase (AMPK) is considered an important target for treatment of type II diabetes and the metabolic syndrome. The muscle-specific isoform of the regulatory gamma-subunit, gamma 3, within the context of AMPK alpha 2 beta 2 gamma 3 complex, is involved in glucose and fat metabolism in skeletal muscle. In an effort to identify gamma 3-specific activators of AMPK, we have produced truncated human recombinant AMPK alpha 2 beta 2 gamma 3 (hu alpha 2 beta 2 gamma 3(trunc)) for biochemical characterization. Infection of insect cells with three baculoviral stocks encoding the individual subunits resulted in soluble expression of a stable hu alpha 2 beta 2 gamma 3(trunc) heterotrimeric complex. Co-expression of the three subunits was essential for solubility since the individual protein components, when expressed separately, were almost completely insoluble. The hu alpha 2 beta 2 gamma 3(trunc) heterotrimer was purified to apparent homogeneity from baculovirus-infected insect cells in a 1:1:1 stoichiometric complex. The hu alpha 2 beta 2 gamma 3(trunc) heterotrimer had significant circular dichroism signal that was lost as a function of temperature, implying that the purified protein was folded. The hu alpha 2 beta 2 gamma 3(trunc) complex was capable of binding AMP and ATP, although the heterotrimer showed preference for AMP, in particular, as seen by thermal denaturation circular dichroism analyses. Further experiments showed that the truncated complex bound ZMP (AICAR-monophosphate) albeit with much lower affinity than AMP. To investigate whether there were isoform-specific differences in the nucleotide binding affinities, a well-characterized truncated mammalian alpha 1 beta 2 gamma 1 (m alpha 1 beta 2 gamma 1(trunc)) equivalent of hu alpha 2 beta 2 gamma 3(trunc) was also purified. The gamma 1 and gamma 3 isoforms showed comparable nucleotide binding affinities and solution behavior properties.


Asunto(s)
Proteínas Quinasas Activadas por AMP/aislamiento & purificación , Baculoviridae/genética , Proteínas Quinasas Activadas por AMP/química , Secuencia de Aminoácidos , Animales , Baculoviridae/metabolismo , Sitios de Unión , Línea Celular , Humanos , Isoenzimas/química , Isoenzimas/aislamiento & purificación , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia , Spodoptera/citología
2.
Biochemistry ; 48(46): 11045-55, 2009 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-19824700

RESUMEN

Current antimitotic cancer chemotherapy based on vinca alkaloids and taxanes target tubulin, a protein required not only for mitotic spindle formation but also for the overall structural integrity of terminally differentiated cells. Among many innovations targeting specific mitotic events, inhibition of motor enzymes including KSP (or Eg5) has been validated as a highly productive approach. Many reported KSP inhibitors bind to an induced allosteric site near the site of ATP hydrolysis, and some have been tested in clinical trials with varying degrees of success. This allosteric site was defined in detail by X-ray crystallography of inhibitor complexes, yet complementary information on binding thermodynamics is still lacking. Using two model ATP-uncompetitive inhibitors, monastrol and ispinesib, we report here the results of thermal denaturation and isothermal titration calorimetric studies. These binding studies were conducted with the wild-type KSP motor domain as well as two ispinesib mutants (D130V and A133D) identified to confer resistance to ispinesib treatment. The thermodynamic parameters obtained were placed in the context of the available structural information and corresponding models of the two ispinesib-resistant mutants. The resulting overall information formed a strong basis for future structure-based design of inhibitors of KSP and related motor enzymes.


Asunto(s)
Benzamidas/farmacología , Resistencia a Antineoplásicos , Inhibidores Enzimáticos/farmacología , Cinesinas/genética , Cinesinas/metabolismo , Nucleótidos/metabolismo , Quinazolinas/farmacología , Termodinámica , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Sustitución de Aminoácidos , Benzamidas/metabolismo , Biocatálisis , Calorimetría , Dicroismo Circular , Resistencia a Antineoplásicos/genética , Inhibidores Enzimáticos/metabolismo , Humanos , Cinesinas/antagonistas & inhibidores , Cinética , Magnesio/química , Magnesio/metabolismo , Modelos Moleculares , Nucleótidos/química , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Pirimidinas/química , Pirimidinas/metabolismo , Quinazolinas/metabolismo , Proteínas Recombinantes de Fusión/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Temperatura , Tionas/química , Tionas/metabolismo , Temperatura de Transición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA