Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 298(3): 101647, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35101451

RESUMEN

The dual leucine zipper kinase (DLK) is a key regulator of axon regeneration and degeneration in response to neuronal injury; however, regulatory mechanisms of the DLK function via its interacting proteins are largely unknown. To better understand the molecular mechanism of DLK function, we performed yeast two-hybrid screening analysis and identified FK506-binding protein-like (FKBPL, also known as WAF-1/CIP1 stabilizing protein 39) as a DLK-binding protein. FKBPL binds to the kinase domain of DLK and inhibits its kinase activity. In addition, FKBPL induces DLK protein degradation through ubiquitin-dependent pathways. We further assessed other members in the FKBP protein family and found that FK506-binding protein 8 (FKBP8) also induced DLK degradation. We identified the lysine 271 residue in the kinase domain as a major site of DLK ubiquitination and SUMO3 conjugation and was thus responsible for regulating FKBP8-mediated proteasomal degradation that was inhibited by the substitution of the lysine 271 to arginine. FKBP8-mediated degradation of DLK is mediated by autophagy pathway because knockdown of Atg5 inhibited DLK destabilization. We show that in vivo overexpression of FKBP8 delayed the progression of axon degeneration and suppressed neuronal death after axotomy in sciatic and optic nerves. Taken together, this study identified FKBPL and FKBP8 as novel DLK-interacting proteins that regulate DLK stability via the ubiquitin-proteasome and lysosomal protein degradation pathways.


Asunto(s)
Axones , Quinasas Quinasa Quinasa PAM , Degeneración Nerviosa , Proteínas de Unión a Tacrolimus , Axones/enzimología , Axones/metabolismo , Axones/patología , Leucina Zippers , Lisina/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Regeneración Nerviosa , Proteínas de Unión a Tacrolimus/metabolismo , Ubiquitina/metabolismo
2.
Molecules ; 23(3)2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29543778

RESUMEN

Excitotoxicity and oxidative stress play vital roles in the development of neurodegenerative disorders including Alzheimer's disease (AD). In the present study, we investigated the effect of N-((3,4-dihydro-2H-benzo[h]chromen-2-yl)methyl)-4-methoxyaniline (BL-M) on excitotoxic neuronal cell damage in primary cultured rat cortical cells, and compared to that of memantine, a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist clinically used to treat AD. We found that BL-M inhibited glutamate- or N-methyl-d-aspartate (NMDA)-induced excitotoxic cell damage. The IC50 value of BL-M against NMDA toxicity was comparable to that of memantine. BL-M potently inhibited intracellular reactive oxygen species generated by glutamate or NMDA. Additionally, it inhibited the formation of 1,1-diphenyl-2-picryl-hydrazyl radicals in vitro and lipid peroxidation in rat brain homogenates. In contrast, memantine showed minimal or negligible antioxidant activity. Western blotting and immunocytochemical analyses showed that BL-M, not memantine, increased the ERK1/2 phosphorylation and subsequent phosphorylation of cAMP response element-binding protein (CREB). The inhibition of NMDA toxicity by BL-M was dramatically reversed by U0126, a well-known MEK inhibitor, suggesting that ERK1/2-mediated CREB phosphorylation is required for the neuroprotective action. Collectively, in this study, we demonstrated the neuroprotective effect of a newly synthesized chromene derivative BL-M and its underlying action mechanism(s). In contrast to memantine, BL-M exhibited marked antioxidant activity. Furthermore, it enhanced the ERK-mediated phosphorylation of CREB, which plays a crucial neuroprotective role. Our findings suggest that BL-M may be beneficial for AD and other neurodegenerative disorders associated with excitotoxicity as well as oxidative stress.


Asunto(s)
Compuestos de Anilina/farmacología , Antioxidantes/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Compuestos de Anilina/química , Animales , Antioxidantes/química , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Memantina/farmacología , Estructura Molecular , Neuronas/citología , Neuronas/metabolismo , Fármacos Neuroprotectores/química , Fosforilación , Ratas , Especies Reactivas de Oxígeno/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Cytokine ; 81: 39-49, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26878647

RESUMEN

Microglia, the resident macrophages of the central nervous system, play a vital role in the regulation of innate immune function and neuronal homeostasis of the brain. Currently, much interest is being generated regarding the investigation of the microglial migration that results in their accumulation at focal sites of injury. Chemokines including CCL2 are known to cause the potential induction of migration of microglial cells, although the underlying mechanisms are not well understood. In the present study, using murine neonatal BV2 microglial cells as a model, we investigate the impact of CCL2 on the migration of microglial cells and address the probable molecular events within the cellular signaling cascades mediating CCL2-induced cell migration. Our results demonstrate concentration- and time-dependent induction of BV2 cell migration by CCL2 and reveal complex mechanisms involving the activation of MEK, ERK1/2, and Akt, and their cross-talk. In addition, we demonstrate that the MEK/ERK pathway activated by CCL2 treatment mediate p90RSK activation in BV2 cells. Moreover, our findings indicate that Akt, ERK1/2, and p90RSK are the downstream effectors of PI3K in the CCL2-induced signaling. Finally, phosphorylation of the transcription factors c-jun and ATF-1 is found to be a further downstream signaling cascade in the CCL2-mediated action. Our results suggest that CCL2-induced activation of c-jun and ATF-1 is likely to be linked to the MEK/ERK and PI3K signaling pathways, respectively. Taken together, these findings contribute to a better understanding of CCL2-induced microglial migration and the probable signaling pathways involved.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Quimiocina CCL2/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Microglía/efectos de los fármacos , Factor de Transcripción Activador 1/metabolismo , Animales , Animales Recién Nacidos , Western Blotting , Línea Celular , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones , Microglía/citología , Microglía/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-jun/deficiencia , Proteínas Proto-Oncogénicas c-jun/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Factores de Tiempo
4.
Heliyon ; 10(6): e28121, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38545214

RESUMEN

Colorectal cancer (CRC) is a type of cancer that develops in the colon or rectum and is the second leading cause of cancer-related death worldwide. Several epidemiology studies have identified a significant sexual dimorphism in CRC, with women exhibiting a lower incidence rate and delayed onset compared to men. This study aims to investigate the sexual dimorphism in the inflammatory response in colitis-associated CRC and its relationship with estrogen and estrogen receptors. An azoxymethane (AOM)/dextran sodium sulfate (DSS) mouse model was used to induce colitis-associated CRC. Five-week-old male and female mice were randomly assigned into either the control group or the AOM/DSS CRC group, with 10 mice in each group. Colitis-associated CRC was induced by injecting AOM (10 mg/kg) and administering two-cycles of DSS treatment in the drinking water. The results revealed a significant decrease in colon length exclusively in the female group, indicating more severe colonic inflammation (P < 0.01). A significant interaction was identified between sex and AOM/DSS treatment in the female AOM/DSS group, with higher visceral fat weight compared to their male counterparts (P < 0.05). The female AOM/DSS group also exhibited elevated production of M1 macrophage-related pro-inflammatory cytokines, suggesting increased tumor-associated macrophage activity. Surprisingly, the male AOM/DSS group showed a marked increase in serum estradiol levels, while the female AOM/DSS group exhibited a decrease compared to the normal control group. Additionally, a notable upregulation of both estrogen receptor α and estrogen receptor ß expression was observed in the colon tissues of the AOM/DSS groups compared to the normal control groups, with estrogen receptor ß expression being particularly pronounced in females. Taken together, our findings suggest that a decline in endogenous estrogen and increased estrogen receptors potentially contribute to the pro-inflammatory response in early CRC by augmenting cytokine expressions associated with M1 macrophage polarization in females.

5.
Food Sci Biotechnol ; 33(4): 913-923, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38371686

RESUMEN

Rebaudioside A (Reb A) and neohesperidin dihydrochalcone (NHDC) are known as intense sweeteners. This study aimed to examine the anti-obesity effects of Reb A and NHDC. C57BL/6 J-ob/ob mice were supplemented with Reb A (50 mg/kg body weight [b.w.]), NHDC (100 mg/kg b.w.), or their combination (COMB) for 4 weeks. COMB-supplemented mice showed significant reduction in b.w. gain, food efficiency ratio, and fat mass. Additionally, mice in the COMB group showed suppressed levels of genes related to adipogenesis, lipogenesis, and lipolysis in the perirenal fat and the levels of hepatic triglyceride, glutamic oxaloacetic transaminase, and glutamic pyruvic transaminase. The lipogenesis and pro-inflammatory gene expressions were also downregulated in the liver, whereas ß-oxidation related genes were upregulated in the COMB group. In addition, mice that received COMB showed distinct gut microbiota structure, enriched in Blautia and Parabacteroides, and depleted in Faecalibaculum and Mucispirillum, in relation to the control group. These results suggest that supplementation with Reb A and NHDC may be an effective treatment for obesity-related metabolic disorders. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01391-1.

6.
Int Immunopharmacol ; 80: 106231, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32007708

RESUMEN

Novel 1,2,3,4-tetrahydroquinoline derivatives with N-alkanoyl, N-benzoyl, or chlorobenzoyl substituents were designed and synthesized to inhibit nuclear factor-kappa B (NF-κB) known to be involved in the regulation of many immune and inflammatory responses. These compounds have been previously reported to inhibit NF-κB transcriptional activity in Raw 267.4 macrophage cells and exhibit cytotoxicities to several human cancer cell lines (Jo et al., ACS Med. Chem. Lett. 7 (2016) 385-390). Accumulating evidence indicated that NF-κB is also involved in neuroinflammation implicated in many neurodegenerative diseases. Thus, the present study investigated effects of 1,2,3,4-tetrahydroquinoline derivatives on LPS-stimulated inflammatory mediators and cell migration using BV2 microglial cells as a model. We found that seven compounds tested in this study inhibited LPS-induced pro-inflammatory mediators including interleukin-6, tumor necrosis factor-α, and nitric oxide in concentration-dependent manners. Among these compounds, ELC-D-2 exhibited the most potent inhibition without showing significant cytotoxicity. We also found that ELC-D-2 attenuated levels of LPS-induced inducible nitric oxide synthase and cyclooxygenase-2. Moreover, ELC-D-2 inhibited nuclear translocation of NF-κB by suppressing inhibitor of kappa Bα phosphorylation. Furthermore, ELC-D-2 inhibited LPS-induced activation of c-Jun N-terminal kinase (JNK), which was associated with suppression of inflammatory mediators and migration of LPS-treated BV2 cells. Collectively, our findings demonstrate that ELC-D-2 inhibits LPS-induced pro-inflammatory mediators and cell migration by suppressing NF-κB translocation and JNK phosphorylation in BV2 microglial cells. These results suggest that ELC-D-2 might have a beneficial impact on various brain disorders in which neuroinflammation involving microglial activation plays a crucial role in the pathogenesis of these diseases.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Microglía/efectos de los fármacos , Quinolinas/farmacología , Animales , Línea Celular , Movimiento Celular/inmunología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos/inmunología , Sistema de Señalización de MAP Quinasas/inmunología , Ratones , Microglía/inmunología , Microglía/metabolismo , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/inmunología , Quinolinas/química
7.
Antioxidants (Basel) ; 10(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396950

RESUMEN

Mangosteen has long been utilized as a traditional medicine in Southeast Asia. Diverse extracts of mangosteen pericarp and its bioactive xanthones exhibit various bioactivities. However, the pharmacological potential of mangosteen pericarp water extract (MPW) has not been reported yet. This study used primary cultured rat cortical cells to investigate the effect of MPW on neurotoxicity. We found that MPW inhibited neurotoxicity and production of reactive oxygen species triggered by Aß(25-35) or excitatory amino acids. MPW inhibited caspase 3 activation and DNA fragmentation in Aß(25-35)- or N-methyl-D-aspartate-treated cells, suggesting an anti-apoptotic action. Additionally, MPW reduced lipid peroxidation and scavenged 1,1-diphenyl-2-picrylhydrazyl radicals, assuring its antioxidant property. Furthermore, MPW suppressed ß-secretase and acetylcholinesterase activities. These findings prompted us to evaluate its effect on memory dysfunction in scopolamine-treated mice using Morris water maze test. Oral administration of MPW at the dosage of 50, 100, or 300 mg/kg for four days significantly decreased the latency time to find the platform and markedly increased the swimming time in the target quadrant. Taken together, our results suggest that MPW exerts memory-enhancing effect through antioxidative neuroprotection and anti-apoptotic action. Accordingly, MPW may have a potential to prevent or treat memory impairment associated with Alzheimer's disease.

8.
Oxid Med Cell Longev ; 2019: 3640753, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31019651

RESUMEN

Among a series of xanthones identified from mangosteen, the fruit of Garcinia mangostana L. (Guttifereae), α- and γ-mangostins are known to be major constituents exhibiting diverse biological activities. However, the effects of γ-mangostin on oxidative neurotoxicity and impaired memory are yet to be elucidated. In the present study, the protective effect of γ-mangostin on oxidative stress-induced neuronal cell death and its underlying action mechanism(s) were investigated and compared to that of α-mangostin using primary cultured rat cortical cells. In addition, the effect of orally administered γ-mangostin on scopolamine-induced memory impairment was evaluated in mice. We found that γ-mangostin exhibited prominent protection against H2O2- or xanthine/xanthine oxidase-induced oxidative neuronal death and inhibited reactive oxygen species (ROS) generation triggered by these oxidative insults. In contrast, α-mangostin had no effects on the oxidative neuronal damage or associated ROS production. We also found that γ-mangostin, not α-mangostin, significantly inhibited H2O2-induced DNA fragmentation and activation of caspases 3 and 9, demonstrating its antiapoptotic action. In addition, only γ-mangostin was found to effectively inhibit lipid peroxidation and DPPH radical formation, while both mangostins inhibited ß-secretase activity. Furthermore, we observed that the oral administration of γ-mangostin at dosages of 10 and 30 mg/kg markedly improved scopolamine-induced memory impairment in mice. Collectively, these results provide both in vitro and in vivo evidences for the neuroprotective and memory enhancing effects of γ-mangostin. Multiple mechanisms underlying this neuroprotective action were suggested in this study. Based on our findings, γ-mangostin could serve as a potentially preferable candidate over α-mangostin in combatting oxidative stress-associated neurodegenerative diseases including Alzheimer's disease.


Asunto(s)
Trastornos de la Memoria/tratamiento farmacológico , Neurotoxinas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Xantonas/uso terapéutico , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Apoptosis/efectos de los fármacos , Compuestos de Bifenilo/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/patología , Peróxido de Hidrógeno/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Ratones Endogámicos ICR , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Picratos/química , Ratas Sprague-Dawley , Escopolamina , Xantonas/química , Xantonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA