Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nucleic Acids Res ; 48(19): 10867-10876, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33051686

RESUMEN

The relationship between stochastic transcriptional bursts and dynamic 3D chromatin states is not well understood. Using an innovated, ultra-sensitive technique, we address here enigmatic features underlying the communications between MYC and its enhancers in relation to the transcriptional process. MYC thus interacts with its flanking enhancers in a mutually exclusive manner documenting that enhancer hubs impinging on MYC detected in large cell populations likely do not exist in single cells. Dynamic encounters with pathologically activated enhancers responsive to a range of environmental cues, involved <10% of active MYC alleles at any given time in colon cancer cells. Being the most central node of the chromatin network, MYC itself likely drives its communications with flanking enhancers, rather than vice versa. We submit that these features underlie an acquired ability of MYC to become dynamically activated in response to a diverse range of environmental cues encountered by the cell during the neoplastic process.


Asunto(s)
Carcinogénesis/genética , Ensamble y Desensamble de Cromatina , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Drosophila , Redes Reguladoras de Genes , Células HCT116 , Humanos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Procesos Estocásticos
2.
Genes Dev ; 23(22): 2598-603, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19933149

RESUMEN

Recent observations highlight that the mammalian genome extensively communicates with itself via long-range chromatin interactions. The causal link between such chromatin cross-talk and epigenetic states is, however, poorly understood. We identify here a network of physically juxtaposed regions from the entire genome with the common denominator of being genomically imprinted. Moreover, CTCF-binding sites within the H19 imprinting control region (ICR) not only determine the physical proximity among imprinted domains, but also transvect allele-specific epigenetic states, identified by replication timing patterns, to interacting, nonallelic imprinted regions during germline development. We conclude that one locus can directly or indirectly pleiotropically influence epigenetic states of multiple regions on other chromosomes with which it interacts.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Impresión Genómica/genética , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Alelos , Animales , Células Cultivadas , Células Madre Embrionarias , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Largo no Codificante , ARN no Traducido
3.
Nat Rev Genet ; 10(4): 269-76, 2009 04.
Artículo en Inglés | MEDLINE | ID: mdl-19274048

RESUMEN

An overall link between the potential for gene transcription and the timing of replication in S phase is now well established in metazoans. Here we discuss emerging evidence that highlights the possibility that replication timing is causally linked with epigenetic reprogramming. In particular, we bring together conclusions from a range of studies to propose a model in which reprogramming factors determine the timing of replication and the implementation of reprogramming events requires passage through S phase. These considerations have implications for our understanding of development, evolution and diseases such as cancer.


Asunto(s)
Replicación del ADN/genética , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Animales , Cromatina/genética , Cromatina/metabolismo , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/metabolismo , Evolución Molecular , Genoma , Humanos , Modelos Biológicos , Neoplasias/genética , Neoplasias/metabolismo , Fase S
4.
Nature ; 461(7261): 212-7, 2009 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-19741702

RESUMEN

The genome forms extensive and dynamic physical interactions with itself in the form of chromosome loops and bridges, thus exploring the three-dimensional space of the nucleus. It is now possible to examine these interactions at the molecular level, and we have gained glimpses of their functional implications. Chromosomal interactions can contribute to the silencing and activation of genes within the three-dimensional context of the nuclear architecture. Technical advances in detecting these interactions contribute to our understanding of the functional organization of the genome, as well as its adaptive plasticity in response to environmental changes during development and disease.


Asunto(s)
Posicionamiento de Cromosoma , Cromosomas/genética , Cromosomas/metabolismo , Regulación de la Expresión Génica , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromosomas/química , Humanos , Conformación de Ácido Nucleico , Transcripción Genética
5.
Nat Genet ; 38(11): 1341-7, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17033624

RESUMEN

Accumulating evidence converges on the possibility that chromosomes interact with each other to regulate transcription in trans. To systematically explore the epigenetic dimension of such interactions, we devised a strategy termed circular chromosome conformation capture (4C). This approach involves a circularization step that enables high-throughput screening of physical interactions between chromosomes without a preconceived idea of the interacting partners. Here we identify 114 unique sequences from all autosomes, several of which interact primarily with the maternally inherited H19 imprinting control region. Imprinted domains were strongly overrepresented in the library of 4C sequences, further highlighting the epigenetic nature of these interactions. Moreover, we found that the direct interaction between differentially methylated regions was linked to epigenetic regulation of transcription in trans. Finally, the patterns of interactions specific to the maternal H19 imprinting control region underwent reprogramming during in vitro maturation of embryonic stem cells. These observations shed new light on development, cancer epigenetics and the evolution of imprinting.


Asunto(s)
Cromosomas/química , Clonación Molecular/métodos , Epigénesis Genética/fisiología , Regulación de la Expresión Génica/genética , Animales , Animales Recién Nacidos , Sitios de Unión , Factor de Unión a CCCTC , Cromatina/química , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias , Impresión Genómica/fisiología , Hígado/metabolismo , Ratones , Ratones Transgénicos , Modelos Biológicos , Conformación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , ARN Largo no Codificante , ARN no Traducido/genética , Proteínas Represoras/metabolismo , Transactivadores
6.
Curr Opin Cell Biol ; 19(3): 321-5, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17466501

RESUMEN

Despite considerable efforts, the spatial link between the nuclear architecture and the genome remains enigmatic. The 4C method, independently innovated in four different laboratories, might in combination with other methods change that. As this method is based on the unbiased identification of sequences interacting with specific baits, there are unique opportunities for unravelling the secrets of how the genome functions in 3D.


Asunto(s)
Biología , Mapeo Cromosómico , ADN Circular , Genoma , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Animales , Secuencia de Bases , Cartilla de ADN , Predicción , Genoma Humano , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Técnicas de Amplificación de Ácido Nucleico , Conformación de Ácido Nucleico
7.
Nat Genet ; 36(10): 1105-10, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15361875

RESUMEN

Chromatin insulators demarcate expression domains by blocking the cis effects of enhancers or silencers in a position-dependent manner. We show that the chromatin insulator protein CTCF carries a post-translational modification: poly(ADP-ribosyl)ation. Chromatin immunoprecipitation analysis showed that a poly(ADP-ribosyl)ation mark, which exclusively segregates with the maternal allele of the insulator domain in the H19 imprinting control region, requires the bases that are essential for interaction with CTCF. Chromatin immunoprecipitation-on-chip analysis documented that the link between CTCF and poly(ADP-ribosyl)ation extended to more than 140 mouse CTCF target sites. An insulator trap assay showed that the insulator function of most of these CTCF target sites is sensitive to 3-aminobenzamide, an inhibitor of poly(ADP-ribose) polymerase activity. We suggest that poly(ADP-ribosyl)ation imparts chromatin insulator properties to CTCF at both imprinted and nonimprinted loci, which has implications for the regulation of expression domains and their demise in pathological lesions.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Proteínas Represoras/metabolismo , Animales , Factor de Unión a CCCTC , Cromatina/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética , Femenino , Regulación de la Expresión Génica , Impresión Genómica , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Procesamiento Proteico-Postraduccional , ARN Largo no Codificante , ARN no Traducido/genética , Proteínas Represoras/genética , Transcripción Genética
8.
EMBO J ; 27(8): 1255-65, 2008 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-18354495

RESUMEN

Ribosomal RNA synthesis is the eukaryotic cell's main transcriptional activity, but little is known about the chromatin domain organization and epigenetics of actively transcribed rRNA genes. Here, we show epigenetic and spatial organization of mouse rRNA genes at the molecular level. TTF-I-binding sites subdivide the rRNA transcription unit into functional chromatin domains and sharply delimit transcription factor occupancy. H2A.Z-containing nucleosomes occupy the spacer promoter next to a newly characterized TTF-I-binding site. The spacer and the promoter proximal TTF-I-binding sites demarcate the enhancer. DNA from both the enhancer and the coding region is hypomethylated in actively transcribed repeats. 3C analysis revealed an interaction between promoter and terminator regions, which brings the beginning and end of active rRNA genes into close contact. Reporter assays show that TTF-I mediates this interaction, thereby linking topology and epigenetic regulation of the rRNA genes.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Epigénesis Genética/fisiología , Genes de ARNr/fisiología , Regiones Promotoras Genéticas/fisiología , Regiones Terminadoras Genéticas , Factores de Transcripción/fisiología , Animales , Unión Competitiva/genética , Células CHO , Cricetinae , Cricetulus , Proteínas de Unión al ADN/metabolismo , Ratones , Células 3T3 NIH , Unión Proteica/genética , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología
9.
Bioessays ; 32(1): 37-50, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20020479

RESUMEN

The multifunctional zinc-finger protein CCCTC-binding factor (CTCF) is a very strong candidate for the role of coordinating the expression level of coding sequences with their three-dimensional position in the nucleus, apparently responding to a "code" in the DNA itself. Dynamic interactions between chromatin fibers in the context of nuclear architecture have been implicated in various aspects of genome functions. However, the molecular basis of these interactions still remains elusive and is a subject of intense debate. Here we discuss the nature of CTCF-DNA interactions, the CTCF-binding specificity to its binding sites and the relationship between CTCF and chromatin, and we examine data linking CTCF with gene regulation in the three-dimensional nuclear space. We discuss why these features render CTCF a very strong candidate for the role and propose a unifying model, the "CTCF code," explaining the mechanistic basis of how the information encrypted in DNA may be interpreted by CTCF into diverse nuclear functions.


Asunto(s)
Núcleo Celular/genética , Núcleo Celular/metabolismo , Expresión Génica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Humanos , Ratones , Modelos Biológicos , Modelos Genéticos , Nucleosomas/genética , Nucleosomas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Represoras/química , Cohesinas
10.
J Biol Chem ; 285(26): 19727-37, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20427289

RESUMEN

Whether signal transduction pathways regulate epigenetic states in response to environmental cues remains poorly understood. We demonstrate here that Smad3, signaling downstream of transforming growth factor beta, interacts with the zinc finger domain of CCCTC-binding factor (CTCF), a nuclear protein known to act as "the master weaver of the genome." This interaction occurs via the Mad homology 1 domain of Smad3. Although Smad2 and Smad4 fail to interact, an alternatively spliced form of Smad2 lacking exon 3 interacts with CTCF. CTCF does not perturb well established transforming growth factor beta gene responses. However, Smads and CTCF co-localize to the H19 imprinting control region (ICR), which emerges as an insulator in cis and regulator of transcription and replication in trans via direct CTCF binding to the ICR. Smad recruitment to the ICR requires intact CTCF binding to this locus. Smad2/3 binding to the ICR requires Smad4, which potentially provides stability to the complex. Because the CTCF-Smad complex is not essential for the chromatin insulator function of the H19 ICR, we propose that it can play a role in chromatin cross-talk organized by the H19 ICR.


Asunto(s)
Cromatina/metabolismo , Proteínas Represoras/metabolismo , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Animales , Animales Recién Nacidos , Factor de Unión a CCCTC , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Cromatina/genética , Inmunoprecipitación de Cromatina , Femenino , Expresión Génica/efectos de los fármacos , Impresión Genómica/genética , Células Hep G2 , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Masculino , Ratones , Unión Proteica/efectos de los fármacos , ARN Largo no Codificante , ARN no Traducido/genética , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Smad/genética , Proteína smad3/genética , Proteína smad3/metabolismo , Transfección
11.
Chromosoma ; 119(4): 351-60, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20174815

RESUMEN

More than 10(9) base pairs of the genome in higher eucaryotes are positioned in the interphase nucleus such that gene activation, gene repression, remote gene regulation by enhancer elements, and reading as well as adjusting epigenetic marks are possible. One important structural and functional component of chromatin organization is the zinc finger factor CTCF. Two decades of research has advanced the understanding of the fundamental role that CTCF plays in regulating such a vast expanse of DNA.


Asunto(s)
Cromatina/fisiología , Nucleosomas/fisiología , Proteínas Represoras/fisiología , Animales , Sitios de Unión , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/fisiología , Núcleo Celular/fisiología , Cromatina/química , Cromatina/ultraestructura , Proteínas Cromosómicas no Histona/fisiología , Cromosomas/fisiología , Cromosomas Humanos/fisiología , Proteínas de Unión al ADN/fisiología , Elementos de Facilitación Genéticos , Impresión Genómica , Humanos , Inactivación del Cromosoma X , Dedos de Zinc/fisiología , Cohesinas
13.
Mol Cell Biol ; 27(5): 1631-48, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17210645

RESUMEN

CTCF is a transcription factor with highly versatile functions ranging from gene activation and repression to the regulation of insulator function and imprinting. Although many of these functions rely on CTCF-DNA interactions, it is an emerging realization that CTCF-dependent molecular processes involve CTCF interactions with other proteins. In this study, we report the association of a subpopulation of CTCF with the RNA polymerase II (Pol II) protein complex. We identified the largest subunit of Pol II (LS Pol II) as a protein significantly colocalizing with CTCF in the nucleus and specifically interacting with CTCF in vivo and in vitro. The role of CTCF as a link between DNA and LS Pol II has been reinforced by the observation that the association of LS Pol II with CTCF target sites in vivo depends on intact CTCF binding sequences. "Serial" chromatin immunoprecipitation (ChIP) analysis revealed that both CTCF and LS Pol II were present at the beta-globin insulator in proliferating HD3 cells but not in differentiated globin synthesizing HD3 cells. Further, a single wild-type CTCF target site (N-Myc-CTCF), but not the mutant site deficient for CTCF binding, was sufficient to activate the transcription from the promoterless reporter gene in stably transfected cells. Finally, a ChIP-on-ChIP hybridization assay using microarrays of a library of CTCF target sites revealed that many intergenic CTCF target sequences interacted with both CTCF and LS Pol II. We discuss the possible implications of our observations with respect to plausible mechanisms of transcriptional regulation via a CTCF-mediated direct link of LS Pol II to the DNA.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Genoma Humano , ARN Polimerasa II/metabolismo , Proteínas Represoras/metabolismo , Animales , Sitios de Unión , Neoplasias de la Mama/patología , Factor de Unión a CCCTC , Línea Celular Tumoral , Núcleo Celular/metabolismo , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/química , Genes Reporteros , Células HeLa , Humanos , Inmunohistoquímica , Células K562 , Ratones , Células 3T3 NIH , Análisis de Secuencia por Matrices de Oligonucleótidos , Estructura Terciaria de Proteína , ARN Polimerasa II/química , ARN Polimerasa II/genética , Proteínas Represoras/química , Transfección
14.
J Immunol ; 181(4): 2878-86, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18684979

RESUMEN

The execution of appropriate gene expression patterns during immune responses is of eminent importance where CpG methylation has emerged as an essential mechanism for gene silencing. We have charted the methylation status of regulatory elements in the human IFNG gene encoding the signature cytokine of the Th1 response. Surprisingly, human naive CD4(+) T lymphocytes displayed hypermethylation at the IFNG promoter region, which is in sharp contrast to the completely demethylated status of this region in mice. Th1 differentiation induced demethylation of the IFNG promoter and the upstream conserved nucleotide sequence 1 enhancer region, whereas Th2-differentiated lymphocytes remained hypermethylated. Furthermore, CD19(+) B lymphocytes displayed hypomethylation at the IFNG promoter region with a similar pattern to Th1 effector cells. When investigating the methylation status among tumor-infiltrating CD4(+) T lymphocytes from patients with colon cancer, we found that tumor-infiltrating lymphocytes cells are inappropriately hypermethylated, and thus not confined to the Th1 lineage. In contrast, CD4(+) T cells from the tumor draining lymph node were significantly more demethylated than tumor-infiltrating lymphocytes. We conclude that there are obvious interspecies differences in the methylation status of the IFNG gene in naive CD4(+) T lymphocytes, where Th1 commitment in human lymphocytes involves demethylation before IFNG expression. Finally, investigations of tumor-infiltrating lymphocytes and CD4(+) cells from tumor draining lymph node demonstrate methylation of regulatory regions within key effector genes as an epigenetic mechanism of tumor-induced immunosuppression.


Asunto(s)
Islas de CpG/inmunología , Metilación de ADN , Tolerancia Inmunológica/genética , Interferón gamma/genética , Interferón gamma/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Regiones Promotoras Genéticas/inmunología , Animales , Línea Celular Tumoral , Técnicas de Cocultivo , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Secuencia Conservada/genética , Evolución Molecular , Humanos , Linfocitos Infiltrantes de Tumor/patología , Masculino , Ratones , Células TH1/citología , Células TH1/inmunología , Células TH1/metabolismo , Células TH1/patología , Transcripción Genética , Células Tumorales Cultivadas
15.
Proc Natl Acad Sci U S A ; 104(52): 20926-31, 2007 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18087038

RESUMEN

Loss of imprinting (LOI) of the insulin-like growth factor-II gene (IGF2), leading to abnormal activation of the normally silent maternal allele, is a common human epigenetic population variant associated with a 5-fold increased frequency of colorectal neoplasia. Here, we show first that LOI leads specifically to increased expression of proliferation-related genes in mouse intestinal crypts. Surprisingly, LOI(+) mice also have enhanced sensitivity to IGF-II signaling, not simply increased IGF-II levels, because in vivo blockade with NVP-AEW541, a specific inhibitor of the IGF-II signaling receptor, showed reduction of proliferation-related gene expression to levels half that seen in LOI(-) mice. Signal transduction assays in microfluidic chips confirmed this enhanced sensitivity with marked augmentation of Akt/PKB signaling in LOI(+) cells at low doses of IGF-II, which was reduced in the presence of the inhibitor to levels below those found in LOI(-) cells, and was associated with increased expression of the IGF1 and insulin receptor genes. We exploited this increased IGF-II sensitivity to develop an in vivo chemopreventive strategy using the azoxymethane (AOM) mutagenesis model. LOI(+) mice treated with AOM showed a 60% increase in premalignant aberrant crypt foci (ACF) formation over LOI(-) mice. In vivo IGF-II blockade with NVP-AEW541 abrogated this effect, reducing ACF to a level 30% lower even than found in exposed LOI(-) mice. Thus, LOI increases cancer risk in a counterintuitive way, by increasing the sensitivity of the IGF-II signaling pathway itself, providing a previously undescribed epigenetic chemoprevention strategy in which cells with LOI are "IGF-II addicted" and undergo reduced tumorigenesis in the colon upon IGF-II pathway blockade.


Asunto(s)
Impresión Genómica , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Animales , Anticarcinógenos/farmacología , Azoximetano/farmacología , Proliferación Celular , Metilación de ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Pirimidinas/farmacología , Pirroles/farmacología , Transducción de Señal
18.
Nat Genet ; 51(12): 1723-1731, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31784729

RESUMEN

WNT signaling activates MYC expression in cancer cells. Here we report that this involves an oncogenic super-enhancer-mediated tethering of active MYC alleles to nuclear pores to increase transcript export rates. As the decay of MYC transcripts is more rapid in the nucleus than in the cytoplasm, the oncogenic super-enhancer-facilitated export of nuclear MYC transcripts expedites their escape from the nuclear degradation system in colon cancer cells. The net sum of this process, as supported by computer modeling, is greater cytoplasmic MYC messenger RNA levels in colon cancer cells than in wild type cells. The cancer-cell-specific gating of MYC is regulated by AHCTF1 (also known as ELYS), which connects nucleoporins to the oncogenic super-enhancer via ß-catenin. We conclude that WNT signaling collaborates with chromatin architecture to post-transcriptionally dysregulate the expression of a canonical cancer driver.


Asunto(s)
Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Genes myc , Factores de Transcripción/genética , Vía de Señalización Wnt/genética , Colon/citología , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/fisiología , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Procesamiento Postranscripcional del ARN , Factores de Transcripción/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
19.
F1000Res ; 72018.
Artículo en Inglés | MEDLINE | ID: mdl-29904581

RESUMEN

Transcriptional enhancers constitute a subclass of regulatory elements that facilitate transcription. Such regions are generally organized by short stretches of DNA enriched in transcription factor-binding sites but also can include very large regions containing clusters of enhancers, termed super-enhancers. These regions increase the probability or the rate (or both) of transcription generally in cis and sometimes over very long distances by altering chromatin states and the activity of Pol II machinery at promoters. Although enhancers were discovered almost four decades ago, their inner workings remain enigmatic. One important opening into the underlying principle has been provided by observations that enhancers make physical contacts with their target promoters to facilitate the loading of the RNA polymerase complex. However, very little is known about how such chromatin loops are regulated and how they govern transcription in the three-dimensional context of the nuclear architecture. Here, we present current themes of how enhancers may boost gene expression in three dimensions and we identify currently unresolved key questions.

20.
Mol Cell Biol ; 24(8): 3497-504, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15060168

RESUMEN

The differentially methylated imprinting control region (ICR) region upstream of the H19 gene regulates allelic Igf2 expression by means of a methylation-sensitive chromatin insulator function. We have previously shown that maternal inheritance of mutated (three of the four) target sites for the 11-zinc finger protein CTCF leads to loss of Igf2 imprinting. Here we show that a mutation in only CTCF site 4 also leads to robust activation of the maternal Igf2 allele despite a noticeably weaker interaction in vitro of site 4 DNA with CTCF compared to other ICR sites, sites 1 and 3. Moreover, maternally inherited sites 1 to 3 become de novo methylated in complex patterns in subpopulations of liver and heart cells with a mutated site 4, suggesting that the methylation privilege status of the maternal H19 ICR allele requires an interdependence between all four CTCF sites. In support of this conclusion, we show that CTCF molecules bind to each other both in vivo and in vitro, and we demonstrate strong interaction between two CTCF-DNA complexes, preassembled in vitro with sites 3 and 4. We propose that the CTCF sites may cooperate to jointly maintain both methylation-free status and insulator properties of the maternal H19 ICR allele. Considering many other CTCF targets, we propose that site-specific interactions between various DNA-bound CTCF molecules may provide general focal points in the organization of looped chromatin domains involved in gene regulation.


Asunto(s)
Proteínas de Unión al ADN/genética , Impresión Genómica , Factor II del Crecimiento Similar a la Insulina/genética , Mutación , ARN no Traducido/genética , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Represoras/genética , Animales , Factor de Unión a CCCTC , Islas de CpG , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Femenino , Regulación de la Expresión Génica , Factor II del Crecimiento Similar a la Insulina/metabolismo , Masculino , Metilación , Ratones , Unión Proteica , ARN Largo no Codificante , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA