RESUMEN
Eukaryotic cells maintain proteostasis through mechanisms that require cytoplasmic and mitochondrial translation. Genetic defects affecting cytoplasmic translation perturb synapse development, neurotransmission, and are causative of neurodevelopmental disorders, such as Fragile X syndrome. In contrast, there is little indication that mitochondrial proteostasis, either in the form of mitochondrial protein translation and/or degradation, is required for synapse development and function. Here we focus on two genes deleted in a recurrent copy number variation causing neurodevelopmental disorders, the 22q11.2 microdeletion syndrome. We demonstrate that SLC25A1 and MRPL40, two genes present in the microdeleted segment and whose products localize to mitochondria, interact and are necessary for mitochondrial ribosomal integrity and proteostasis. Our Drosophila studies show that mitochondrial ribosome function is necessary for synapse neurodevelopment, function, and behavior. We propose that mitochondrial proteostasis perturbations, either by genetic or environmental factors, are a pathogenic mechanism for neurodevelopmental disorders.SIGNIFICANCE STATEMENT The balance between cytoplasmic protein synthesis and degradation, or cytoplasmic proteostasis, is required for normal synapse function and neurodevelopment. Cytoplasmic and mitochondrial ribosomes are necessary for two compartmentalized, yet interdependent, forms of proteostasis. Proteostasis dependent on cytoplasmic ribosomes is a well-established target of genetic defects that cause neurodevelopmental disorders, such as autism. Here we show that the mitochondrial ribosome is a neurodevelopmentally regulated organelle whose function is required for synapse development and function. We propose that defective mitochondrial proteostasis is a mechanism with the potential to contribute to neurodevelopmental disease.
Asunto(s)
Discapacidades del Desarrollo , Mitocondrias/fisiología , Proteínas Mitocondriales/genética , Transportadores de Anión Orgánico/genética , Proteostasis/genética , Ribonucleoproteínas/genética , Proteínas Ribosómicas/genética , Animales , Línea Celular , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/metabolismo , Discapacidades del Desarrollo/fisiopatología , Drosophila , Regulación de la Expresión Génica/genética , Humanos , Neurogénesis/fisiología , Biosíntesis de Proteínas/genética , Ratas , Ratas Sprague-Dawley , Ribosomas/fisiologíaRESUMEN
Superoxide dismutases are key enzymes in elimination of the superoxide anion radical (O2 â¢- ) generated intracellularly or by exogenous oxidative stress eliciting agents, like menadione. In this study, we investigated the physiological role of the manganese superoxide dismutase-encoding gene in Fusarium verticillioides via the construction of a gene deletion mutant, ΔFvmnSOD and comparing its phenotype with that of the wild-type parental strain and a ΔFvmnSOD' C strain, complemented with the functional manganese superoxide dismutase gene. Deletion of FvmnSOD had no effect on the relative intracellular superoxide ratio but increased the sensitivity of the fungus to menadione sodium bisulphite on Czapek-Dox stress agar plates. The lack of FvmnSOD caused changes in mitochondrial morphology and physiology: The volumetric ratio of these cell organelles in the second hyphal segment, as well as the total, the KCN-sensitive cytochrome c-dependent and the KCN+SHAM (salicylhidroxamic acid)-resistant residual respiration rates, were higher in the mutant as compared to the wild-type and the complemented strains. Nevertheless, changes in the respiration rates were attributable to the higher volumetric ratio of mitochondria found in the gene deletion mutant. Changes in the mitochondrial functions also brought about higher sensitivity to apoptotic cell death elicited by the Penicillium chrysogenum antifungal protein. The gene deletion mutant developed significantly thinner hyphae in comparison to the wild-type strain. Deletion of FvmnSOD had no effect on fumonisin B1 and B2 production of the fungus grown in Myro medium as a static culture.
Asunto(s)
Apoptosis , Proteínas Fúngicas/metabolismo , Fusarium/fisiología , Mitocondrias/fisiología , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Fumonisinas/metabolismo , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Prueba de Complementación Genética , Hifa/genética , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Mitocondrias/enzimología , Mutación , Oxígeno/metabolismo , Fenotipo , Superóxido Dismutasa/genéticaRESUMEN
The sparse single-spike activity of dentate gyrus granule cells (DG GCs) is punctuated by occasional brief bursts of 3-7 action potentials. It is well-known that such presynaptic bursts in individual mossy fibers (MFs; axons of granule cells) are often able to discharge postsynaptic CA3 pyramidal cells due to powerful short-term facilitation. However, what happens in the CA3 network after the passage of a brief MF burst, before the arrival of the next burst or solitary spike, is not understood. Because MFs innervate significantly more CA3 interneurons than pyramidal cells, we focused on unitary MF responses in identified interneurons in the seconds-long postburst period, using paired recordings in rat hippocampal slices. Single bursts as short as 5 spikes in <30 ms in individual presynaptic MFs caused a sustained, large increase (tripling) in the amplitude of the unitary MF-EPSCs for several seconds in ivy, axo-axonic/chandelier and basket interneurons. The postburst unitary MF-EPSCs in these feedforward interneurons reached amplitudes that were even larger than the MF-EPSCs during the bursts in the same cells. In contrast, no comparable postburst enhancement of MF-EPSCs could be observed in pyramidal cells or nonfeedforward interneurons. The robust postburst increase in MF-EPSCs in feedforward interneurons was associated with significant shortening of the unitary synaptic delay and large downstream increases in disynaptic IPSCs in pyramidal cells. These results reveal a new cell type-specific plasticity that enables even solitary brief bursts in single GCs to powerfully enhance inhibition at the DG-CA3 interface in the seconds-long time-scales of interburst intervals.SIGNIFICANCE STATEMENT The hippocampal formation is a brain region that plays key roles in spatial navigation and learning and memory. The first stage of information processing occurs in the dentate gyrus, where principal cells are remarkably quiet, discharging low-frequency single action potentials interspersed with occasional brief bursts of spikes. Such bursts, in particular, have attracted a lot of attention because they appear to be critical for efficient coding, storage, and recall of information. We show that single bursts of a few spikes in individual granule cells result in seconds-long potentiation of excitatory inputs to downstream interneurons. Thus, while it has been known that bursts powerfully discharge ("detonate") hippocampal excitatory cells, this study clarifies that they also regulate inhibition during the interburst intervals.
Asunto(s)
Giro Dentado/fisiología , Potenciales de Acción/fisiología , Animales , Axones/fisiología , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/fisiología , Gránulos Citoplasmáticos/fisiología , Giro Dentado/citología , Potenciales Postsinápticos Excitadores/fisiología , Retroalimentación Fisiológica , Femenino , Masculino , Fibras Musgosas del Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Ratas , Ratas Wistar , Sinapsis/fisiologíaRESUMEN
Feedforward inhibition (FFI) between the dentate gyrus (DG) and CA3 sparsifies and shapes memory- and spatial navigation-related activities. However, our understanding of this prototypical FFI circuit lacks essential details, as the wiring of FFI is not yet mapped between individual DG granule cells (GCs) and CA3 pyramidal cells (PCs). Importantly, theoretically opposite network contributions are possible depending on whether the directly excited PCs are differently inhibited than the non-excited PCs. Therefore, to better understand FFI wiring schemes, we compared the prevalence of disynaptic inhibitory postsynaptic events (diIPSCs) between pairs of individually recorded GC axons or somas and PCs, some of which were connected by monosynaptic excitation, while others were not. If FFI wiring is specific, diIPSCs are expected only in connected PCs; whereas diIPSCs should not be present in these PCs if FFI is laterally wired from individual GCs. However, we found single GC-elicited diIPSCs with similar probabilities irrespective of the presence of monosynaptic excitation. This observation suggests that the wiring of FFI between individual GCs and PCs is independent of the direct excitation. Therefore, the randomly distributed FFI contributes to the hippocampal signal sparsification by setting the general excitability of the CA3 depending on the overall activity of GCs.
Asunto(s)
Región CA3 Hipocampal/fisiología , Giro Dentado/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Neuronas/fisiología , Animales , Femenino , Masculino , Vías Nerviosas/fisiología , Técnicas de Placa-Clamp , Ratas Wistar , Técnicas de Cultivo de TejidosRESUMEN
In this study germination of Spirodela polyrhiza (L.) Schleiden (giant duckweed) turions was assessed under cadmium exposure to test applicability of a novel turion-based ecotoxicology method. Floating success of germinating turions, protrusion of the first and subsequent fronds as test endpoints were investigated and compared to results of standard duckweed growth inhibition tests with fronds of the same species. Our results indicate that turions can be used to characterize effects of toxic substances. Initial phase of turion germination (floating up and appearance of the first frond) was less sensitive to Cd treatments than the subsequent frond production. The calculated effective concentrations for growth rates in turion and normal frond tests were similar. Single frond area produced by germinating turions proved to be the most sensitive test endpoint. Single frond area and colony disintegration as additionally measured parameters in normal frond cultures also changed due to Cd treatments but the sensitivity of these parameters was lower than that of growth rates.
Asunto(s)
Araceae/efectos de los fármacos , Cadmio/toxicidad , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/toxicidad , Araceae/crecimiento & desarrollo , Ecotoxicología , Germinación/efectos de los fármacosRESUMEN
In this study, we exposed a commonly used duckweed species-Lemna gibba L.-to twelve environmentally relevant metals and metalloids under laboratory conditions. The phytotoxic effects were evaluated in a multi-well-plate-based experimental setup by means of the chlorophyll fluorescence imaging method. This technique allowed the simultaneous measuring of the growth and photosynthetic parameters in the same samples. The inhibition of relative growth rates (based on frond number and area) and photochemical efficiency (Fv/Fo and Y(II)) were both calculated from the obtained chlorophyll fluorescence images. In the applied test system, growth-inhibition-based phytotoxicity endpoints proved to be more sensitive than chlorophyll-fluorescence-based ones. Frond area growth inhibition was the most responsive parameter with a median EC50 of 1.75 mg L-1, while Fv/Fo, the more responsive chlorophyll-fluorescence-based endpoint, resulted in a 5.34 mg L-1 median EC50 for the tested metals. Ag (EC50 0.005-1.27 mg L-1), Hg (EC50 0.24-4.87 mg L-1) and Cu (EC50 0.37-1.86 mg L-1) were the most toxic elements among the tested ones, while As(V) (EC50 47.15-132.18 mg L-1), Cr(III) (EC50 6.22-19.92 mg L-1), Se(VI) (EC50 1.73-10.39 mg L-1) and Zn (EC50 3.88-350.56 mg L-1) were the least toxic ones. The results highlighted that multi-well-plate-based duckweed phytotoxicity assays may reduce space, time and sample volume requirements compared to the standard duckweed growth inhibition tests. These benefits, however, come with lowered test sensitivity. Our multi-well-plate-based test setup resulted in considerably higher median EC50 (3.21 mg L-1) for frond-number-based growth inhibition than the 0.683 mg L-1 median EC50 derived from corresponding data from the literature with standardized Lemna-tests. Under strong acute phytotoxicity, frond parts with impaired photochemical functionality may become undetectable by chlorophyll fluorometers. Consequently, the plant parts that are still detectable display a virtually higher average photosynthetic performance, leading to an underestimation of phytotoxicity. Nevertheless, multi-well-plate-based duckweed phytotoxicity assays, combined with chlorophyll fluorescence imaging, offer definite advantages in the rapid screening of large sample series or multiple species/clones. As chlorophyll fluorescence images provide information both on the photochemical performance of the test plants and their morphology, a joint analysis of the two endpoint groups is recommended in multi-well-plate-based duckweed phytotoxicity assays to maximize the information gained from the tests.
RESUMEN
The mammalian brain contains a diverse array of cell types, including dozens of neuronal subtypes with distinct anatomical and functional characteristics. The brain leverages these neuron-type specializations to perform diverse circuit operations and thus execute different behaviors properly. Through the use of Cre lines, access to specific neuron types has improved over past decades. Despite their extraordinary utility, development and cross-breeding of Cre lines is time consuming and expensive, presenting a significant barrier to entry for investigators. Furthermore, cell-based therapeutics developed in Cre mice are not clinically translatable. Recently, several adeno-associated virus (AAV) vectors utilizing neuron-type-specific regulatory transcriptional sequences (enhancer-AAVs) were developed that overcome these limitations. Using a publicly available RNA sequencing (RNA-seq) dataset, we evaluated the potential of several candidate enhancers for neuron-type-specific targeting in the hippocampus. Here, we demonstrate that a previously identified enhancer-AAV selectively targets dentate granule cells over other excitatory neuron types in the hippocampus of wild-type adult mice.
Asunto(s)
Giro Dentado , Neuronas , Ratones , Animales , Giro Dentado/fisiología , Neuronas/fisiología , Hipocampo/fisiología , MamíferosRESUMEN
Preventative treatment for Alzheimer's Disease (AD) is dire, yet mechanisms underlying early regional vulnerability remain unknown. In AD, one of the earliest pathophysiological correlates to cognitive decline is hyperexcitability, which is observed first in the entorhinal cortex. Why hyperexcitability preferentially emerges in specific regions in AD is unclear. Using regional, cell-type-specific proteomics and electrophysiology in wild-type mice, we uncovered a unique susceptibility of the entorhinal cortex to human amyloid precursor protein (hAPP). Entorhinal hyperexcitability resulted from selective vulnerability of parvalbumin (PV) interneurons, with respect to surrounding excitatory neurons. This effect was partially replicated with an APP chimera containing a humanized amyloid-beta sequence. EC hyperexcitability could be ameliorated by co-expression of human Tau with hAPP at the expense of increased pathological tau species, or by enhancing PV interneuron excitability in vivo. This study suggests early interventions targeting inhibitory neurons may protect vulnerable regions from the effects of APP/amyloid and tau pathology.
Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Corteza Entorrinal , Interneuronas , Proteínas tau , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Modelos Animales de Enfermedad , Corteza Entorrinal/metabolismo , Corteza Entorrinal/patología , Interneuronas/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Parvalbúminas/metabolismo , Proteínas tau/metabolismo , Proteínas tau/genéticaRESUMEN
Preventative treatment for Alzheimer's Disease is of dire importance, and yet, cellular mechanisms underlying early regional vulnerability in Alzheimer's Disease remain unknown. In human patients with Alzheimer's Disease, one of the earliest observed pathophysiological correlates to cognitive decline is hyperexcitability. In mouse models, early hyperexcitability has been shown in the entorhinal cortex, the first cortical region impacted by Alzheimer's Disease. The origin of hyperexcitability in early-stage disease and why it preferentially emerges in specific regions is unclear. Using cortical-region and cell-type-specific proteomics coupled with ex vivo and in vivo electrophysiology, we uncovered differential susceptibility to human-specific amyloid precursor protein (hAPP) in a model of sporadic Alzheimer's. Unexpectedly, our findings reveal that early entorhinal hyperexcitability may result from intrinsic vulnerability of parvalbumin (PV) interneurons, rather than the suspected layer II excitatory neurons. This vulnerability of entorhinal PV interneurons is specific to hAPP, as it could not be recapitulated with increased murine APP expression. However, partial replication of the findings could be seen after introduction of a murine APP chimera containing a humanized amyloid-beta sequence. Surprisingly, neurons in the Somatosensory Cortex showed no such vulnerability to adult-onset hAPP expression. hAPP-induced hyperexcitability in entorhinal cortex could be ameliorated by enhancing PV interneuron excitability in vivo. Co-expression of human Tau with hAPP decreased circuit hyperexcitability, but at the expense of increased pathological tau species. This study suggests early disease interventions targeting non-excitatory cell types may protect regions with early vulnerability to pathological symptoms of Alzheimer's Disease and downstream cognitive decline.
RESUMEN
In recent years, we and others have identified a number of enhancers that, when incorporated into rAAV vectors, can restrict the transgene expression to particular neuronal populations. Yet, viral tools to access and manipulate fine neuronal subtypes are still limited. Here, we performed systematic analysis of single cell genomic data to identify enhancer candidates for each of the cortical interneuron subtypes. We established a set of enhancer-AAV tools that are highly specific for distinct cortical interneuron populations and striatal cholinergic neurons. These enhancers, when used in the context of different effectors, can target (fluorescent proteins), observe activity (GCaMP) and manipulate (opto- or chemo-genetics) specific neuronal subtypes. We also validated our enhancer-AAV tools across species. Thus, we provide the field with a powerful set of tools to study neural circuits and functions and to develop precise and targeted therapy.
RESUMEN
The Special Issue "Duckweed: Research Meets Applications" of the journal Plants (ISSN 2223-7747) presents a comprehensive update of the current progress in the field [...].
RESUMEN
The 6th International Conference on Duckweed Research and Applications (6th ICDRA) was organized at the Institute of Plant Genetics and Crop Plant Research (IPK) located in Gatersleben, Germany, from 29 May to 1 June 2022. The growing community of duckweed research and application specialists was noted with participants from 21 different countries including an increased share of newly integrated young researchers. The four-day conference focused on diverse aspects of basic and applied research together with practical applications of these tiny aquatic plants that could have an enormous potential for biomass production.
RESUMEN
The biosorption and recovery of ionic gadolinium (Gd) from contaminated water by the free-floating duckweed Lemna gibba was studied. The highest non-toxic concentration range was determined as (6.7 mg L-1). The concentration of Gd in the medium and in the plant biomass was monitored and a mass balance was established. Tissue Gd concentration of Lemna increased with increasing Gd concentration of the medium. The bioconcentration factor was up to 1134 and in nontoxic concentrations up to 2.5 g kg-1 Gd tissue concentration was reached. Lemna ash contained 23.2 g Gd kg-1. Gd removal efficiency from the medium was 95%, however, only 17-37% of the initial Gd content of the medium accumulated in Lemna biomass, an average of 5% remained in the water, and 60-79% was calculated as a precipitate. Gadolinium-exposed Lemna plants released ionic Gd into the nutrient solution when they were transferred to a Gd-free medium. The experimental results revealed that in constructed wetlands, L. gibba is able to remove ionic Gd from the water and can be suitable for bioremediation and recovery purposes.
Asunto(s)
Araceae , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , Gadolinio/farmacología , BiomasaRESUMEN
Independent automated scoring of sleep-wake and seizures have recently been achieved; however, the combined scoring of both states has yet to be reported. Mouse models of epilepsy typically demonstrate an abnormal electroencephalographic (EEG) background with significant variability between mice, making combined scoring a more difficult classification problem for manual and automated scoring. Given the extensive EEG variability between epileptic mice, large group sizes are needed for most studies. As large datasets are unwieldy and impractical to score manually, automatic seizure and sleep-wake classification are warranted. To this end, we developed an accurate automated classifier of sleep-wake states, seizures, and the post-ictal state. Our benchmark was a classification accuracy at or above the 93% level of human inter-rater agreement. Given the failure of parametric scoring in the setting of altered baseline EEGs, we adopted a machine-learning approach. We created several multi-layer neural network architectures that were trained on human-scored training data from an extensive repository of continuous recordings of electrocorticogram (ECoG), left and right hippocampal local field potential (HPC-L and HPC-R), and electromyogram (EMG) in the murine intra-amygdala kainic acid model of medial temporal lobe epilepsy. We then compared different network models, finding a bidirectional long short-term memory (BiLSTM) design to show the best performance with validation and test portions of the dataset. The SWISC (sleep-wake and the ictal state classifier) achieved >93% scoring accuracy in all categories for epileptic and non-epileptic mice. Classification performance was principally dependent on hippocampal signals and performed well without EMG. Additionally, performance is within desirable limits for recording montages featuring only ECoG channels, expanding its potential scope. This accurate classifier will allow for rapid combined sleep-wake and seizure scoring in mouse models of epilepsy and other neurologic diseases with varying EEG abnormalities, thereby facilitating rigorous experiments with larger numbers of mice.
RESUMEN
In this study, growth and ionomic responses of three duckweed species were analyzed, namely Lemna minor, Landoltia punctata, and Spirodela polyrhiza, were exposed for short-term periods to hexavalent chromium or nickel under laboratory conditions. It was found that different duckweed species had distinct ionomic patterns that can change considerably due to metal treatments. The results also show that, because of the stress-induced increase in leaf mass-to-area ratio, the studied species showed different order of metal uptake efficiency if plant area was used as unit of reference instead of the traditional dry weight-based approach. Furthermore, this study revealed that µXRF is applicable in mapping elemental distributions in duckweed fronds. By using this method, we found that within-frond and within-colony compartmentation of metallic ions were strongly metal- and in part species-specific. Analysis of duckweed ionomics is a valuable approach in exploring factors that affect bioaccumulation of trace pollutants by these plants. Apart from remediating industrial effluents, this aspect will gain relevance in food and feed safety when duckweed biomass is produced for nutritional purposes.
RESUMEN
Cryptogams of ten urban flatroofs, contrasting in their age and size, were studied between 2016 and 2018. Siliceous (bituminous felt, gravel, brick) and calcareous (concrete) substrata occurred at each site. Microclimate (T, RH) at two sites of contrasting shading was monitored from September 2016 to January 2017. Biomass of two differently aged, exposed flatroofs was sampled in October 2018. Taxa of Cladonia and Xanthoparmelia have been identified by spot tests and HPTLC. A total of 61 taxa (25 bryophytes, 36 lichens), mostly widespread synanthropic species, have been detected with an explicit difference of species composition between shaded and exposed sites. Floristically interesting species included acidophilous bryophytes (Hedwigia ciliata, Racomitrium canescens) and lichens (Xanthoparmelia conspersa, Stereocaulon tomentosum) of montane character. The most widespread lichen is Cladonia rei which accounted for a significant part of the biomass at selected sites. Species-area curves for bryophytes at exposed sites have become saturated at 100-150 m2. In contrast, saturation of lichen diversity has not been reached even at the largest sites. Flatroofs with traditional roofing techniques can harbour relatively diverse microhabitats and species-rich synanthropic vegetation. It is urgent to study these sites before renovation with modern roofing techniques eliminates them. Diversification of urban surroundings is possible in the future via application of various substrats in renovated and newly constructed roofs.
Asunto(s)
Líquenes , Hungría , BiomasaRESUMEN
Preventative treatment for Alzheimer's Disease is of dire importance, and yet, cellular mechanisms underlying early regional vulnerability in Alzheimer's Disease remain unknown. In human patients with Alzheimer's Disease, one of the earliest observed pathophysiological correlates to cognitive decline is hyperexcitability1. In mouse models, early hyperexcitability has been shown in the entorhinal cortex, the first cortical region impacted by Alzheimer's Disease2-4. The origin of hyperexcitability in early-stage disease and why it preferentially emerges in specific regions is unclear. Using cortical-region and cell-type- specific proteomics and patch-clamp electrophysiology, we uncovered differential susceptibility to human-specific amyloid precursor protein (hAPP) in a model of sporadic Alzheimer's. Unexpectedly, our findings reveal that early entorhinal hyperexcitability may result from intrinsic vulnerability of parvalbumin interneurons, rather than the suspected layer II excitatory neurons. This vulnerability of entorhinal PV interneurons is specific to hAPP, as it could not be recapitulated with increased murine APP expression. Furthermore, the Somatosensory Cortex showed no such vulnerability to adult-onset hAPP expression, likely resulting from PV-interneuron variability between the two regions based on physiological and proteomic evaluations. Interestingly, entorhinal hAPP-induced hyperexcitability was quelled by co-expression of human Tau at the expense of increased pathological tau species. This study suggests early disease interventions targeting non-excitatory cell types may protect regions with early vulnerability to pathological symptoms of Alzheimer's Disease and downstream cognitive decline.
RESUMEN
The mammalian brain contains the most diverse array of cell types of any organ, including dozens of neuronal subtypes with distinct anatomical and functional characteristics. The brain leverages these neuron-type-specializations to perform diverse circuit operations and thus execute different behaviors properly. Through the use of Cre lines, access to specific neuron types has steadily improved over past decades. Despite their extraordinary utility, development and cross-breeding of Cre lines is time-consuming and expensive, presenting a significant barrier to entry for many investigators. Furthermore, cell-based therapeutics developed in Cre mice are not clinically translatable. Recently, several AAV vectors utilizing neuron-type-specific regulatory transcriptional sequences (enhancer-AAVs) were developed which overcome these limitations. Using a publicly available RNAseq dataset, we evaluated the potential of several candidate enhancers for neuron-type-specific targeting in the hippocampus. Here we identified a promising enhancer-AAV for targeting dentate granule cells and validated its selectivity in wild-type adult mice.
RESUMEN
Understanding the activity of the mammalian brain requires an integrative knowledge of circuits at distinct scales, ranging from ion channel gating to circuit connectomics. Computational models are regularly employed to understand how multiple parameters contribute synergistically to circuit behavior. However, traditional models of anatomically and biophysically realistic neurons are computationally demanding, especially when scaled to model local circuits. To overcome this limitation, we trained several artificial neural network (ANN) architectures to model the activity of realistic multicompartmental cortical neurons. We identified an ANN architecture that accurately predicted subthreshold activity and action potential firing. The ANN could correctly generalize to previously unobserved synaptic input, including in models containing nonlinear dendritic properties. When scaled, processing times were orders of magnitude faster compared with traditional approaches, allowing for rapid parameter-space mapping in a circuit model of Rett syndrome. Thus, we present a novel ANN approach allowing for rapid, detailed network experiments using inexpensive and commonly available computational resources.