Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Am Chem Soc ; 145(40): 21879-21885, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37774389

RESUMEN

Metal-organic cages/polyhedra (MOCs) are versatile building blocks for advanced polymer networks with properties that synergistically blend those of traditional polymers and crystalline frameworks. Nevertheless, constructing polyMOCs from very stable Pt(II)-based MOCs or mixtures of metal ions such as Pd(II) and Pt(II) has not, to our knowledge, been demonstrated, nor has exploration of how the dynamics of metal-ligand exchange at the MOC level may impact bulk polyMOC energy dissipation. Here, we introduce a new class of polymer metal-organic cage (polyMOC) gels featuring polyethylene glycol (PEG) strands of varied length cross-linked through bis-pyridyl-carbazole-based M6L12 cubes, where M is Pd(II), Pt(II), or mixtures thereof. We show that, while polyMOCs with varied Pd(II) content have similar network structures, their average stress-relaxation rates are tunable over 3 orders of magnitude due to differences in Pd(II)- and Pt(II)-ligand exchange rates at the M6L12 junction level. Moreover, mixed-metal polyMOCs display relaxation times indicative of intrajunction cooperative interactions, which stands in contrast to previous materials based on point metal junctions. Altogether, this work (1) introduces a novel MOC architecture for polyMOC design, (2) shows that polyMOCs can be prepared from mixtures of Pd(II)/Pt(II), and (3) demonstrates that polyMOCs display unique relaxation behavior due to their multivalent junctions, offering a strategy for controlling polyMOC properties independently of their polymer components.

2.
J Am Chem Soc ; 144(29): 13276-13284, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35819842

RESUMEN

The immobilization of homogeneous catalysts onto supports to improve recyclability while maintaining catalytic efficiency is often a trial-and-error process limited by poor control of the local catalyst environment and few strategies to append catalysts to support materials. Here, we introduce a modular heterogenous catalysis platform that addresses these challenges. Our approach leverages the well-defined interiors of self-assembled Pd12L24 metal-organic cages/polyhedra (MOCs): simple mixing of a catalyst-ligand of choice with a polymeric ligand, spacer ligands, and a Pd salt induces self-assembly of Pd12L24-cross-linked polymer gels featuring endohedrally catalyst-functionalized junctions. Semi-empirical calculations show that catalyst incorporation into the MOC junctions of these materials has minimal affect on the MOC geometry, giving rise to well-defined nanoconfined catalyst domains as confirmed experimentally using several techniques. Given the unique network topology of these freestanding gels, they are mechanically robust regardless of their endohedral catalyst composition, allowing them to be physically manipulated and transferred from one reaction to another to achieve multiple rounds of catalysis. Moreover, by decoupling the catalyst environment (interior of MOC junctions) from the physical properties of the support (the polymer matrix), this strategy enables catalysis in environments where homogeneous catalyst analogues are not viable, as demonstrated for the Au(I)-catalyzed cyclization of 4-pentynoic acid in aqueous media.


Asunto(s)
Metales , Polímeros , Catálisis , Geles , Ligandos
3.
Angew Chem Int Ed Engl ; 59(7): 2784-2792, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-31742840

RESUMEN

Photoresponsive materials that change in response to light have been studied for a range of applications. These materials are often metastable during irradiation, returning to their pre-irradiated state after removal of the light source. Herein, we report a polymer gel comprising poly(ethylene glycol) star polymers linked by Cu24 L24 metal-organic cages/polyhedra (MOCs) with coumarin ligands. In the presence of UV light, a photosensitizer, and a hydrogen donor, this "polyMOC" material can be reversibly switched between CuII , CuI , and Cu0 . The instability of the MOC junctions in the CuI and Cu0 states leads to network disassembly, forming CuI /Cu0 solutions, respectively, that are stable until re-oxidation to CuII and supramolecular gelation. This reversible disassembly of the polyMOC network can occur in the presence of a fixed covalent second network generated in situ by copper-catalyzed azide-alkyne cycloaddition (CuAAC), providing interpenetrating supramolecular and covalent networks.

4.
Angew Chem Int Ed Engl ; 56(49): 15575-15579, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-28994233

RESUMEN

Mechanical gradients are often employed in nature to prevent biological materials from damage by creating a smooth transition from strong to weak that dissipates large forces. Synthetic mimics of these natural structures are highly desired to improve distribution of stresses at interfaces and reduce contact deformation in manmade materials. Current synthetic gradient materials commonly suffer from non-continuous transitions, relatively small gradients in mechanical properties, and difficult syntheses. Inspired by the polychaete worm jaw, we report a novel approach to generate stiffness gradients in polymeric materials via incorporation of dynamic monodentate metal-ligand crosslinks. Through spatial control of metal ion content, we created a continuous mechanical gradient that spans over a 200-fold difference in stiffness, approaching the mechanical contrast observed in biological gradient materials.


Asunto(s)
Metales/química , Compuestos Organometálicos/síntesis química , Polímeros/química , Ligandos , Estructura Molecular , Compuestos Organometálicos/química , Estrés Mecánico
5.
Bioconjug Chem ; 27(8): 1784-8, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27457882

RESUMEN

We report the synthesis and study of fluorocarbon (FC) modified polyethylenimine (PEI) for the purpose of siRNA delivery. Low-molecular-weight PEI (Mn = 600) was functionalized with fluorocarbon epoxides of varying length. All FC-modified samples with greater than 2.0 equiv of FC epoxide per PEI induced potent gene silencing in vitro. Compared to hydrocarbon (HC) analogues, the FC vectors showed greater general silencing efficacy, higher cell uptake, and reduced association with serum components. Collectively, the data suggest that modification of polyamines with FCs is a promising approach for the discovery of novel vectors for siRNA delivery.


Asunto(s)
Portadores de Fármacos/química , Fluorocarburos/química , Polietileneimina/química , ARN Interferente Pequeño/química , Animales , Silenciador del Gen , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Peso Molecular , Células 3T3 NIH , Conformación de Ácido Nucleico , ARN Interferente Pequeño/genética
6.
Biomacromolecules ; 17(10): 3138-3144, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27563833

RESUMEN

In this study, we report a new dipeptide functionalization strategy for developing new dendritic bolaamphiphile vectors for efficient siRNA transfection. A focused library of dipeptides was constructed using four amino acids: l-arginine, l-histidine, l-lysine, and l-tryptophan. The dipeptides were coupled to two dendritic bolaamphiphile scaffolds that we developed previously, allowing us to quickly access a focused library of discrete vectors with multivalent dendritic dipeptide functionalities. The resulting discrete bolaamphiphiles were screened for siRNA delivery in vitro in HEK-293 and HeLa cells. Bolaamphiphiles functionalized with dipeptides containing Lys or Arg and either His or Trp were the most effective for in vitro siRNA delivery. Necessary cationic charge to ensure efficient siRNA binding are provided by Arg and Lys residues, whereas endosomal escape is provided through pH responsive buffering of His or membrane interactions of Trp. The most effective vectors (F10 HR/RH) exhibited greater than 75% gene silencing in multiple cell lines and exhibited serum stability.


Asunto(s)
Dipéptidos/química , Furanos/química , Técnicas de Transferencia de Gen , Piridonas/química , ARN Interferente Pequeño/farmacología , Arginina/química , Dipéptidos/farmacología , Furanos/farmacología , Silenciador del Gen , Células HEK293 , Células HeLa , Histidina/química , Humanos , Lisina/química , Piridonas/farmacología , ARN Interferente Pequeño/química , Transfección , Triptófano/química
7.
J Am Chem Soc ; 136(36): 12548-51, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25170560

RESUMEN

A commercially available ruthenium(II) PNP-type pincer catalyst (Ru-Macho) promotes the formation of α-chiral tert-butanesulfinylamines from racemic secondary alcohols and Ellman's chiral tert-butanesulfinamide via a hydrogen borrowing strategy. The formation of α-chiral tert-butanesulfinylamines occurs in yields ranging from 31% to 89% with most examples giving >95:5 dr.


Asunto(s)
Alcoholes/química , Aminas/síntesis química , Compuestos Organometálicos/química , Rutenio/química , Aminación , Aminas/química , Catálisis , Estructura Molecular , Estereoisomerismo
8.
Tetrahedron ; 70(27-28): 4213-4218, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26124536

RESUMEN

A commercially available ruthenium (II) PNP type pincer catalyst (Ru-Macho) promotes formation of amides and imines from alcohols and amines via an acceptorless dehydrogenation pathway. The formation of secondary amides, tertiary amides, and secondary ketimines occurs in yields ranging from 35%-95%.

9.
Nat Commun ; 15(1): 3951, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730254

RESUMEN

Supramolecular polymer networks contain non-covalent cross-links that enable access to broadly tunable mechanical properties and stimuli-responsive behaviors; the incorporation of multiple unique non-covalent cross-links within such materials further expands their mechanical responses and functionality. To date, however, the design of such materials has been accomplished through discrete combinations of distinct interaction types in series, limiting materials design logic. Here we introduce the concept of leveraging "nested" supramolecular crosslinks, wherein two distinct types of non-covalent interactions exist in parallel, to control bulk material functions. To demonstrate this concept, we use polymer-linked Pd2L4 metal-organic cage (polyMOC) gels that form hollow metal-organic cage junctions through metal-ligand coordination and can exhibit well-defined host-guest binding within their cavity. In these "nested" supramolecular network junctions, the thermodynamics of host-guest interactions within the junctions affect the metal-ligand interactions that form those junctions, ultimately translating to substantial guest-dependent changes in bulk material properties that could not be achieved in traditional supramolecular networks with multiple interactions in series.

10.
Adv Mater ; : e2405490, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935929

RESUMEN

DNA serves as a model system in polymer physics due to its ability to be obtained as a uniform polymer with controllable topology and nonequilibrium behavior. Currently, a major obstacle in the widespread adoption of DNA is obtaining it on a scale and cost basis that accommodates bulk rheology and high-throughput screening. To address this, recent advancements in bioreactor-based plasmid DNA production is coupled with anion exchange chromatography producing a unified approach to generating gram-scale quantities of monodisperse DNA. With this method, 1.1 grams of DNA is obtained per batch to generate solutions with concentrations up to 116 mg mL-1. This solution of uniform supercoiled and relaxed circular plasmid DNA, is roughly 69 times greater than the overlap concentration. The utility of this method is demonstrated by performing bulk rheology measurements at sample volumes up to 1 mL on DNA of different lengths, topologies, and concentrations. The measured elastic moduli are orders of magnitude larger than those previously reported for DNA and allowed for the construction of a time-concentration superposition curve that spans 12 decades of frequency. Ultimately, these results can provide important insights into the dynamics of ring polymers and the nature of highly condensed DNA dynamics.

11.
Angew Chem Int Ed Engl ; 52(2): 615-9, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23172689

RESUMEN

A wide range of biaryls were synthesized by palladium-catalyzed Negishi cross-couplings at ambient temperature or with low catalyst loading. This protocol features the use of a recently reported aminobiphenyl palladacycle precatalyst to generate the catalytically active XPhosPd(0) species. Significantly, a wide range of challenging heterocyclic and polyfluorinated aromatic substrates can be employed to give products in excellent yields.


Asunto(s)
Compuestos Organometálicos/síntesis química , Paladio/química , Catálisis , Estructura Molecular , Compuestos Organometálicos/química
12.
Nat Chem ; 14(1): 85-93, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34824461

RESUMEN

Chirality and molecular conformation are central components of life: biological systems rely on stereospecific interactions between discrete (macro)molecular conformers, and the impacts of stereochemistry and rigidity on the properties of small molecules and biomacromolecules have been intensively studied. Nevertheless, how these features affect the properties of synthetic macromolecules has received comparably little attention. Here we leverage iterative exponential growth and ring-opening metathesis polymerization to produce water-soluble, chiral bottlebrush polymers (CBPs) from two enantiomeric pairs of macromonomers of differing rigidity. Remarkably, CBPs with conformationally flexible, mirror image side chains show several-fold differences in cytotoxicity, cell uptake, blood pharmacokinetics and liver clearance; CBPs with comparably rigid, mirror image side chains show no differences. These observations are rationalized with a simple model that correlates greater conformational freedom with enhanced chiral recognition. Altogether, this work provides routes to the synthesis of chiral nanostructured polymers and suggests key roles for stereochemistry and conformational rigidity in the design of future biomaterials.


Asunto(s)
Polímeros/química , Conformación Molecular , Estereoisomerismo
13.
Macromolecules ; 51(23): 9861-9870, 2018 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31303680

RESUMEN

The efficient synthesis of complex functional polymeric nanomaterials is often challenging. Ru-initiated ring-opening metathesis polymerization (ROMP) of multivalent macromonomers followed by cross-linking to form brush-arm star (BASP) polymers enables access to well-defined nano-structures with diverse functionality. This "brush-first" method leaves active Ru in the BASP microgel core, which could potentially be used in a subsequent "ROMP-out" (RO) step to introduce further modifications to the BASP structure via the addition of (macro)monomers. Here, we study this RO approach in depth. The efficiency of RO is assessed for a variety of BASP compositions using a combination of inductively coupled plasma mass spectrometry and gel permeation chromatography. To demonstrate the modularity of the RO process, arylboronic acid-functionalized BASPs were prepared; uptake of these RO-BASPs into hypersialylated cancer cells was enhanced relative to non-functionalized BASPs as determined by flow cytometry and fluorescence microscopy. In addition, the self-assembly of miktoarm BASPs prepared via brush-first and RO with different macromonomers is demonstrated. The combination of brush-first ROMP with RO provides a simple, modular strategy for access to a wide array of functional nanomaterials.

15.
ACS Cent Sci ; 4(8): 982-995, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30159395

RESUMEN

The NLRP3 inflammasome plays a role in the inflammatory response to vaccines, in antimicrobial host defense, and in autoimmune diseases. However, its mechanism of action remains incompletely understood. NLRP3 has been shown to be activated by diverse stimuli including microbial toxins, ATP, particulate matter, etc. that activate multiple cellular processes. There have been two major challenges in translating inflammasome activators into controlled adjuvants. Both stem from their chemical and structural diversity. First, it is difficult to identify a minimum requirement for inflammasome activation. Second, no current activator can be tuned to generate a desired degree of activation. Thus, in order to design such immunomodulatory biomaterials, we developed a new tunable lysosomal rupture probe that leads to significant differences in inflammasome activation owing to structural changes as small as a single amino acid. Using these probes, we conduct experiments that suggest that rupturing lysosomes is a critical, initial step necessary to activate an inflammasome and that it precedes other pathways of activation. We demonstrate that each molecule differentially activates the inflammasome based solely on their degree of lysosomal rupture. We have employed this understanding of chemical control in structure-based design of immunomodulatory NLRP3 agonists on a semipredictive basis. This information may guide therapeutic interventions to prevent or mitigate lysosomal rupture and will also provide a predictive framework for dosable activation of the NLRP3 inflammasome for potential applications in vaccines and immunotherapies.

16.
ACS Med Chem Lett ; 8(2): 168-173, 2017 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-28197306

RESUMEN

Four phthalazinones (CIDs 22334057, 22333974, 22334032, 22334012) and one isoquinolone (CID 5224943) were previously shown to be potent enhancers of antifungal activity of fluconazole against Candida albicans. Several even more potent analogues of these compounds were identified, some with EC50 as low as 1 nM, against C. albicans. The compounds exhibited pharmacological synergy (FIC < 0.5) with fluconazole. The compounds were also shown to enhance the antifungal activity of isavuconazole, a recently FDA approved azole antifungal. Isoquinolone 15 and phthalazinone 24 were shown to be active against several resistant clinical isolates of C. albicans.

17.
ACS Cent Sci ; 1(6): 303-312, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26436138

RESUMEN

Development of safe and effective delivery vectors is a critical challenge for the application of RNA interference (RNAi)-based biotechnologies. In this study we show the rational design of a series of novel dendritic peptide bolaamphiphile vectors that demonstrate high efficiency for the delivery of small interfering RNA (siRNA) while exhibiting low cytotoxicity and hemolytic activity. Systematic investigation into structure-property relationships revealed an important correlation between molecular design, self-assembled nanostructure, and biological activity. The unique bolaamphiphile architecture proved a key factor for improved complex stability and transfection efficiency. The optimal vector contains a fluorocarbon core and exhibited enhanced delivery efficiency to a variety of cell lines and improved serum resistance when compared to hydrocarbon analogues and lipofectamine RNAiMAX. In addition to introducing a promising new vector system for siRNA delivery, the structure-property relationships and "fluorocarbon effect" revealed herein offer critical insight for further development of novel materials for nucleic acid delivery and other biomaterial applications.

18.
Org Lett ; 13(12): 3262-5, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21604792

RESUMEN

A facile synthesis of unsymmetrical N,N'-diarylureas is described. The utilization of the Pd-catalyzed arylation of ureas enables the synthesis of an array of diarylureas in good to excellent yields from benzylurea via a one-pot arylation-deprotection protocol, followed by a second arylation.


Asunto(s)
Paladio/química , Urea/análogos & derivados , Urea/síntesis química , Derivados del Benceno/síntesis química , Derivados del Benceno/química , Catálisis , Estructura Molecular , Urea/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA