Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Environ Sci Technol ; 51(17): 9864-9875, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28813138

RESUMEN

Assessment of water quality evolution in the thousands of existing and future mine pit lakes worldwide requires new numerical tools that integrate geochemical, hydrological, and biological processes. A coupled model was used to test alternative hypothesized controls on water quality in a pit lake over ∼8 years. The evolution of pH, Al, and Fe were closely linked; field observations were reproduced with generic solubility equilibrium controls on Fe(III) and Al and a commonly reported acceleration of the abiotic Fe(II) oxidation rate by 2-3 orders of magnitude. Simulations indicated an ongoing acidity loading at the site, and the depletion of Al mineral buffering capacity after ∼5 years. Simulations also supported the existence of pH limitation on nitrification, and a limitation on phytoplankton growth other than the commonly postulated P and DIC limitations. Furthermore, the model reproduced the general patterns of salinity, pH, Al, and Fe during an uncontrolled river breach in 2011, however, incorporating sediment biogeochemical feedbacks is required to reproduce the observed postbreach internal alkalinity generation in the lake. The modeling approach is applicable to the study of hydrological, geochemical, and biological interactions for a range of lake and reservoir management challenges.


Asunto(s)
Compuestos Férricos , Lagos , Calidad del Agua , Ecología , Hidrobiología , Hidrodinámica
2.
Sci Total Environ ; 723: 138020, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32217386

RESUMEN

Estimating gross primary production and ecosystem respiration from oxygen data is performed widely in aquatic systems, yet these estimates can be challenged by high advective fluxes of oxygen. In this study, we develop a hybrid framework linking data-driven and process-based modelling to examine the effect of storm events on oxygen budgets in a constructed wetland. After calibration against measured flow and water temperature data over a two-month period with three storm events, the model was successfully validated against high frequency dissolved oxygen (DO) data exhibiting large diurnal fluctuations. The results demonstrated that pulses of high-DO water injected into the wetland during storm events were able to dramatically change the wetland oxygen budget. A shift was observed in the dominant oxygen inputs, from benthic net production during non-storm periods, to inflows of oxygen during storm events, which served to dampen the classical diurnal oxygen signature. The model also demonstrated the changing balance of pelagic versus benthic production and hypoxia extent in response to storm events, which has implications for the nutrient attenuation performance of constructed wetlands. The study highlights the benefit of linking analysis of high-frequency oxygen data with process-based modelling tools to unravel the varied responses of components of the oxygen budget to storm events.

3.
Sci Total Environ ; 598: 1001-1014, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28468117

RESUMEN

Among different Water Sensitive Urban Design options, constructed wetlands (CWs) are used to protect and restore downstream water quality by attenuating nutrients generated by stormwater runoff. This research compared the nutrient attenuation ability during a diverse population of storm events of two CWs: (a) a hybrid CW with multiple alternating surface flow (SF) and laterite-based subsurface flow (SSF) compartments, and (b) a single stage SF CW. Within-storm variability, nutrient concentrations were assessed at 2 to 3-h intervals at both the main inlet and outlet of each CW. Dissolved oxygen concentrations of the surface waters were also monitored at 10-min intervals using high frequency in situ sensors. Nutrient loads into the CWs were observed to be higher when a high rainfall event occurred, particularly after longer antecedent dry conditions. Longer hydraulic retention times promoted higher attenuation at both sites. However, the relative extent of nutrient attenuation differed between the CW types; the mean total nitrogen (TN) attenuation in the hybrid and SF CW was 45 and 48%, respectively. The hybrid CW attenuated 67% total phosphorus (TP) loads on average, while the SF CW acted as a net TP source. Periodic storm events transitioned the lentic CW into a lotic CW and caused riparian zone saturation; it was therefore hypothesized that such saturation of organic matter rich-riparian zones led to release of TP in the system. The hybrid CW attenuated the released TP in the downstream laterite-based SSF compartments. Diel oxygen metabolism calculated before and after the storm events was found to be strongly correlated with water temperature, solar exposure and antecedent dry condition during the pre-storm conditions. Furthermore, the SF CW showed a significant relationship between overall nutrient load attenuation and the change in oxygen metabolism during the storm perturbation, suggesting oxygen variation could be a useful proxy indicator of CW function.

4.
Front Plant Sci ; 8: 2097, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29276526

RESUMEN

Submerged macrophytes can have a profound effect on shallow lake ecosystems through their ability to modify the thermal structure and dissolved oxygen levels within the lake. Invasive macrophytes, in particular, can grow rapidly and induce thermal gradients in lakes that may substantially change the ecosystem structure and challenge the survival of aquatic organisms. We performed fine-scale measurements and 3D numerical modeling at high spatiotemporal resolution to assess the effect of the seasonal growth of Potamogeton crispus L. on the spatial and temporal dynamics of temperature and dissolved oxygen in a shallow urban lake (Lake Monger, Perth, WA, Australia). Daytime stratification developed during the growing season and was clearly observed throughout the macrophyte bed. At all times measured, stratification was stronger at the center of the macrophyte bed compared to the bed edges. By fitting a logistic growth curve to changes in plant height over time (r2 = 0.98), and comparing this curve to temperature data at the center of the macrophyte bed, we found that stratification began once the macrophytes occupied at least 50% of the water depth. This conclusion was strongly supported by a 3D hydrodynamic model fitted to weekly temperature profiles measured at four time periods throughout the growing season (r2 > 0.78 at all times). As the macrophyte height increased and stratification developed, dissolved oxygen concentration profiles changed from vertically homogeneous oxic conditions during both the day and night to expression of night-time anoxic conditions close to the sediments. Spatially interpolated maps of dissolved oxygen and 3D numerical modeling results indicated that the plants also reduced horizontal exchange with surrounding unvegetated areas, preventing flushing of low dissolved oxygen water out of the center of the bed. Simultaneously, aerial imagery showed central dieback occurring toward the end of the growing season. Thus, we hypothesized that stratification-induced anoxia can lead to accelerated P. crispus dieback in this region, causing formation of a ring-shaped pattern in spatial macrophyte distribution. Overall, our study demonstrates that submerged macrophytes can alter the thermal characteristics and oxygen levels within shallow lakes and thus create challenging conditions for maximizing their spatial coverage.

5.
Water Res ; 107: 66-82, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27837734

RESUMEN

Among different Water Sensitive Urban Design (WSUD) options, constructed wetlands (CWs) are widely used to protect and support downstream urban waterways from stormwater nutrients. This analysis assessed the nutrient attenuation ability of a novel CW in Western Australia that combined multiple alternating surface flow (SF) and laterite-based subsurface flow (SSF) compartments within a parkland context to improve the urban landscape and amenity. The CW was designed to maximise nutrient reduction despite experiencing a large range of hydrologic conditions, from low transit time nutrient-rich pulses during the wet periods to prolonged low to zero flow conditions during the dry periods. The CW design was further complicated by the possibility of ungauged water inputs after wet antecedent conditions, seasonal macrophyte senescence and a recirculation system to maintain flow during the dry periods. From analysis of data over a range of time scales, we determined that overall the CW attenuated up to 62% total nitrogen (TN) and 99% total phosphorus (TP) loads during dry weather conditions, and 54-76% TN and 27-68% TP during episodic flow pulses. N species attenuation was dominant in the SF compartments, while P species were attenuated mostly within the SSF compartments. Nutrient accumulation in the sediments, and above and below ground biomass of the macrophytes were found to increase during the early stages of operation, suggesting the system reached equilibrium within four years. Further, by comparing trends in nutrient attenuation within the context of diel changes in high frequency oxygen data from different compartments, it was demonstrated that changes in dissolved oxygen were related to changes in nutrient concentration across the CW, although interpretation of this was complicated by changing hydro-climatological conditions. The implementation of this CW concept in a highly seasonal Mediterranean climate demonstrates that urban liveability and environmental health can both be improved through careful design.


Asunto(s)
Fósforo , Humedales , Nitrógeno , Eliminación de Residuos Líquidos , Movimientos del Agua , Purificación del Agua
6.
J Environ Qual ; 31(3): 822-8, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12026085

RESUMEN

Oxic resuspension occurs regularly in shallow lakes, yet its role as a mechanism for contaminant remobilization remains ill defined. This study investigated contaminant remobilization during sediment resuspension and determined whether changes in contaminant sediment partitioning reflected the mechanisms controlling remobilization. Arsenic-contaminated sediment from a shallow wetland was subjected to simulated resuspension under a range of differing initial pH conditions. The effect of resuspension on As partitioning was evaluated using a fractionation scheme targeting the dissolved, ion exchangeable, carbonate, organic, amorphous iron oxide, crystalline iron oxide, and apatite fractions. Rate investigations demonstrated that arsenic remobilization occurred on timescales similar to resuspension events, with concentrations reaching steady state within 24 h. The sediment also buffered slurry pH to 8.3 in experiments where the initial pH was between 4 and 10. This pH regulation was attributed to carbonate dissolution or acid-base equilibria of surface base functional groups, although iron oxide and organic matter dissolution did occur in experiments with an initial pH outside this range. Remobilization caused losses in arsenic associated with the ion exchangeable, organic, and amorphous iron fractions but changes in initial pH have a negligible effect on arsenic remobilization or partitioning within the well-buffered region. Resuspension released approximately 20% of the total sediment arsenic, although calculations indicated that a single resuspension event would not significantly change water column arsenic concentrations. While not conclusively proving the mechanisms of remobilization, fractionation gave valuable insight into the effect of sediment resuspension on contaminant remobilization.


Asunto(s)
Arsénico/química , Contaminantes Químicos del Agua/análisis , Fraccionamiento Químico , Agua Dulce , Sedimentos Geológicos , Humanos , Concentración de Iones de Hidrógeno , Equilibrio Postural , Suspensiones , Contaminación del Agua/prevención & control
7.
Water Res ; 55: 83-94, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24602863

RESUMEN

Extremely acidic and saline groundwater occurs naturally in south-western Australia. Discharge of this water to surface waters has increased following extensive clearing of native vegetation for agriculture and is likely to have negative environmental impacts. The use of passive treatment systems to manage the acidic discharge and its impacts is complicated by the region's semi-arid climate with hot dry summers and resulting periods of no flow. This study evaluates the performance of a pilot-scale compost bioreactor treating extremely acidic and saline drainage under semi-arid climatic conditions over a period of 2.5 years. The bioreactor's substrate consisted of municipal waste organics (MWO) mixed with 10 wt% recycled limestone. After the start-up phase the compost bioreactor raised the pH from ≤3.7 to ≥7 and produced net alkaline outflow for 126 days. The bioreactor removed up to 28 g/m(2)/d CaCO3 equivalent of acidity and acidity removal was found to be load dependent during the first and third year. Extended drying over summer combined with high salinity caused the formation of a salt-clay surface layer on top of the substrate, which was both beneficial and detrimental for bioreactor performance. The surface layer prevented the dehydration of the substrate and ensured it remained waterlogged when the water level in the bioreactor fell below the substrate surface in summer. However, when flow resumed the salt-clay layer acted as a barrier between the water and substrate decreasing performance efficiency. Performance increased again when the surface layer was broken up indicating that the negative climatic impacts can be managed. Based on substrate analysis after 1.5 years of operation, limestone dissolution was found to be the dominant acidity removal process contributing up to 78-91% of alkalinity generation, while bacterial sulfate reduction produced at least 9-22% of the total alkalinity. The substrate might last up to five years before the limestone is exhausted and would need to be replenished. The MWO substrate was found to release metals (Zn, Cu, Pb, Ni and Cr) and cannot be recommended for use in passive treatment systems unless the risk of metal release is addressed.


Asunto(s)
Reactores Biológicos , Contaminantes Químicos del Agua/metabolismo , Ácidos , Clima Desértico , Monitoreo del Ambiente , Agua Subterránea/análisis
8.
Dalton Trans ; (13): 1710-20, 2008 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-18354768

RESUMEN

Single-crystal structural characterizations confirm the existence of the unusual 1 : 4 copper(I) halide : unidentate ligand adducts [Cu(CNt-Bu)4]X for X = Cl, Br (two forms), I (the chloride and one form of the bromide being solvated) with crystal packing dominated by stacks of interleaving cations. Cu-C range between 1.941(2) and 1.972(4) A. The structure of the 1 : 2 chloride complex is also recorded, being [ClCu(CNt-Bu)2], with the copper(I) atom environment trigonal planar, while CuCN : (CNt-Bu) (1 : 1) is a single-stranded polymer which spirals about a crystallographic 3-axis (CN scrambled), the ligands being pendant from the ...CuCNCuCN... string. The (5Cu static broadline NMR spectra of [Cu(CNt-Bu)4]I and [Cu(CNt-Bu)4]Br.H2O in the solid state exhibit dominant, narrow -1/2 <--> +1/2 central transition resonances and associated +/-1/2 <--> +/-3/2 satellite transition resonances which are characteristic of first-order quadrupole broadened systems, while associated high-resolution 65Cu MAS NMR data provide accurate measurement of the 65Cu isotropic chemical shifts. Both approaches provide complete data on the quadrupole and chemical shift interactions which contribute to these spectra. Far-IR spectra of products of reactions involving a range of CuX : t-BuNC ratios reveal the existence of 1 : 1.5 adducts for X = Br, I. Metal-carbon and metal-halogen bands are assigned in the far-IR spectra, which indicate a binuclear double halogen-bridged structure for the 1 : 1.5 complexes.


Asunto(s)
Cobre/química , Halógenos/química , Nitrilos/química , Compuestos Organometálicos/química , Rastreo Diferencial de Calorimetría , Cobre/metabolismo , Halógenos/metabolismo , Espectroscopía de Resonancia Magnética , Nitrilos/metabolismo , Compuestos Organometálicos/síntesis química , Espectrofotometría Infrarroja , Espectrometría Raman , Termogravimetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA