Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Ecol Lett ; 27(3): e14395, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38467468

RESUMEN

The publish-or-perish culture in academia has catalysed the development of an unethical publishing system. This system is characterised by the proliferation of journals and publishers-unaffiliated with learned societies or universities-that maintain extremely large revenues and profit margins diverting funds away from the academic community. Early career researchers (ECRs) are particularly vulnerable to the consequences of this publishing system because of intersecting factors, including pressure to pursue high impact publications, rising publication costs and job insecurity. Moving towards a more ethical system requires that scientists advocate for structural change by making career choices that come with risks, many of which disproportionately impact ECRs. We illuminate major issues facing ECRs in Ecology and Evolution under the current publishing system, and propose a portfolio of actions to promote systemic change that can be implemented by ECRs and established researchers.


Asunto(s)
Edición
2.
Glob Chang Biol ; 30(4): e17271, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38613240

RESUMEN

Ecological and evolutionary theories have proposed that species traits should be important in mediating species responses to contemporary climate change; yet, empirical evidence has so far provided mixed evidence for the role of behavioral, life history, or ecological characteristics in facilitating or hindering species range shifts. As such, the utility of trait-based approaches to predict species redistribution under climate change has been called into question. We develop the perspective, supported by evidence, that trait variation, if used carefully can have high potential utility, but that past analyses have in many cases failed to identify an explanatory value for traits by not fully embracing the complexity of species range shifts. First, we discuss the relevant theory linking species traits to range shift processes at the leading (expansion) and trailing (contraction) edges of species distributions and highlight the need to clarify the mechanistic basis of trait-based approaches. Second, we provide a brief overview of range shift-trait studies and identify new opportunities for trait integration that consider range-specific processes and intraspecific variability. Third, we explore the circumstances under which environmental and biotic context dependencies are likely to affect our ability to identify the contribution of species traits to range shift processes. Finally, we propose that revealing the role of traits in shaping species redistribution may likely require accounting for methodological variation arising from the range shift estimation process as well as addressing existing functional, geographical, and phylogenetic biases. We provide a series of considerations for more effectively integrating traits as well as extrinsic and methodological factors into species redistribution research. Together, these analytical approaches promise stronger mechanistic and predictive understanding that can help society mitigate and adapt to the effects of climate change on biodiversity.


Asunto(s)
Biodiversidad , Cambio Climático , Filogenia , Geografía , Fenotipo
3.
Am Nat ; 198(3): E68-E79, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34403310

RESUMEN

AbstractContinental mountain areas cover <15% of global land surface, yet these regions concentrate >80% of global terrestrial diversity. One prominent hypothesis to explain this pattern proposes that high mountain diversities could be explained by higher diversification rates in regions of high topographic complexity (HTC). While high speciation in mountains has been detected for particular clades and regions, the global extent to which lineages experience faster speciation in mountains remains unknown. Here we addressed this issue using amphibians as a model system (>7,000 species), and we found that families showing high speciation rates contain a high proportion of species distributed in mountains. Moreover, we found that lineages inhabiting areas of HTC speciate faster than lineages occupying areas that are topographically less complex. When comparing across regions, we identified the same pattern in five biogeographical realms where higher speciation rates are associated with higher levels of complex topography. Low-magnitude differences in speciation rates between some low and high complex topographies suggest that high mountain diversity is also affected by low extinction and/or high colonization rates. Nevertheless, our results bolster the importance of mountains as engines of speciation at different geographical scales and highlight their importance for the conservation of global biodiversity.


Asunto(s)
Biodiversidad , Especiación Genética , Anfibios , Animales , Humanos , Filogenia
4.
J Anim Ecol ; 88(1): 114-124, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30146776

RESUMEN

Assemblage similarity decays with geographic distance-a pattern known as the distance-decay relationship. While this pattern has been investigated for a wide range of organisms, ecosystems and geographical gradients, whether these changes vary more cryptically across different forest strata (from ground to canopy) remains elusive. Here, we investigated the influence of ground vs. arboreal assemblages to the general distance-decay relationship observed in forests. We seek to explain differences in distance-decay relationships between strata in the context of the vertical stratification of assemblage composition, richness and abundance. We surveyed for a climate-sensitive model organism, amphibians, across vertical rainforest strata in Madagascar. For each tree, we defined assemblages of ground-dwelling, understory, or canopy species. We calculated horizontal distance-decay in similarity across all trees, and across assemblages of species found in different forest strata (ground, understory and canopy). We demonstrate that within stratum comparisons exhibit a classic distance-decay relationship for canopy and understory communities but no distance-decay relationships for ground communities. We suggest that differences in horizontal turnover between strata may be due to local scale habitat and resource heterogeneity in the canopy, or the influence of arboreal traits on species dispersal and distribution. Synthesis. Biodiversity patterns in horizontal space were not consistent across vertical space, suggesting that canopy fauna may not play by the same set of "rules" as their conspecifics living below them on the ground. Our study provides compelling evidence that the above-ground amphibian assemblage of tropical rainforests is the primary driver of the classical distance-decay relationship.


Asunto(s)
Ecosistema , Bosque Lluvioso , Animales , Biodiversidad , Bosques , Madagascar , Árboles , Clima Tropical
5.
Commun Biol ; 5(1): 628, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35761028

RESUMEN

A rich body of evidence from local-scale experiments and observational studies has revealed stabilizing effects of biodiversity on ecosystem functioning. However, whether these effects emerge across entire regions and continents remains largely overlooked. Here we combine data on the distribution of more than 57,500 plant species and remote-sensing observations throughout the entire Western Hemisphere to investigate the role of multiple facets of plant diversity (species richness, phylogenetic diversity, and functional diversity) in mediating the sensitivity of ecosystems to climate variability at the regional-scale over the past 20 years. We show that, across multiple biomes, regions of greater plant diversity exhibit lower sensitivity (more stable over time) to temperature variability at the interannual and seasonal-scales. While these areas can display lower sensitivity to interannual variability in precipitation, they emerge as highly sensitive to precipitation seasonality. Conserving landscapes of greater diversity may help stabilize ecosystem functioning under climate change, possibly securing the continuous provisions of productivity-related ecosystem service to people.


Asunto(s)
Biodiversidad , Ecosistema , Cambio Climático , Humanos , Filogenia , Plantas
6.
Curr Biol ; 32(19): 4299-4305.e4, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36113469

RESUMEN

A key component of nature's contribution to people is aesthetic value.1,2 Charismatic species rally public support and bolster conservation efforts.3,4 However, an insidious aspect to humanity's valuation of nature is that high value also drives wildlife trade,5,6 which can spearhead the demise of prized species.7-9 Here, we explore the antagonistic roles of aesthetic value in biodiversity conservation by using novel metrics of color to evaluate the aesthetics of the most speciose radiation of birds: passerines (i.e., the perching birds). We identify global color hotspots for passerines and highlight the breadth of color in the global bird trade. The tropics emerge as an epicentre of color, encompassing 91% and 65% of the world's most diverse and most uniquely colored passerine assemblages, respectively. We show that the pet trade, which currently affects 30% of passerines (1,408/5,266), traverses the avian phylogeny and targets clusters of related species that are uniquely colored. We identify an additional 478 species at risk of future trade based on their coloration and phylogenetic relationship to currently traded species-together totaling 1,886 species traded, a 34% increase. By modeling future extinctions based on species' current threat status, we predict localized losses of color diversity and uniqueness in many avian communities, undermining their aesthetic value and muting nature's color palette. Given the distribution of color and the association of unique colors with threat and trade, proactive regulation of the bird trade is crucial to conserving charismatic biodiversity, alongside recognition and celebration of color hotspots.


Asunto(s)
Animales Salvajes , Passeriformes , Animales , Biodiversidad , Conservación de los Recursos Naturales , Estética , Humanos , Filogenia
7.
Ecology ; 102(7): e03368, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33866546

RESUMEN

The broadening in species' thermal tolerance limits and breadth from tropical to temperate latitudes is proposed to reflect spatial gradients in temperature seasonality, but the importance of seasonal shifts in thermal tolerances within and across locations is much less appreciated. We performed thermal assays to examine the maximum and minimum critical temperatures (CTmax and CTmin , respectively) of a mosquito community across their active seasons. Mosquito CTmin tracked seasonal shifts in temperature, whereas CTmax tracked a countergradient pattern with lowest heat tolerances in summer. Mosquito thermal breadth decreased from spring to summer and then increased from summer to autumn. We show a temporal dichotomy in thermal tolerances with thermal breadths of temperate organisms in summer reflecting those of the tropics ("tropicalization") that is sandwiched between a spring and autumn "temperatization." Therefore, our tolerance patterns at a single temperate latitude recapitulate classical patterns across latitude. These findings highlight the need to understand the temporal and spatial components of thermotolerance variation better, including plasticity and rapid seasonal selection, and the potential for this variation to affect species responses to climate change. With summers becoming longer and increasing winter nighttime temperatures, we expect increasing tropicalization of species thermal tolerances in both space and time.


Asunto(s)
Culicidae , Aclimatación , Animales , Regulación de la Temperatura Corporal , Cambio Climático , Estaciones del Año , Temperatura
8.
Ecohealth ; 18(1): 134-144, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-34184170

RESUMEN

Introduced pathogens can alter the geographic distribution of susceptible host species. For example, Batrachochytrium dendrobatidis (Bd) is a fungal pathogen that has been linked to the global decline and extinction of numerous amphibian species during the last four decades. A growing number of studies have described the distribution of Bd and susceptible hosts across the globe; however, knowledge on how Bd may shape the climatic niche of susceptible species is still missing. We estimated the effect of Bd on the geographic distribution and niche dynamics of the critically endangered lowland robber frog (Craugastor ranoides) in Costa Rica. We found a reduction of 98% in the geographic range of this species by 1995, following the epizootic outbreaks of Bd that affected Costa Rica in the 1980 and early 1990s. We also quantified niche contraction and found that the species is currently restricted to dry and warm environments that have been considered unsuitable for Bd. Our results contribute to the understanding of how emerging pathogens shape the climatic niches and geographic distribution of susceptible species.


Asunto(s)
Anuros , Batrachochytrium/patogenicidad , Especies en Peligro de Extinción , Micosis/veterinaria , Animales , Anuros/microbiología , Clima , Brotes de Enfermedades/veterinaria , Micosis/microbiología
9.
Science ; 366(6461): 71-76, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31604304

RESUMEN

Wildlife trade is a multibillion dollar industry that is driving species toward extinction. Of >31,500 terrestrial bird, mammal, amphibian, and squamate reptile species, ~18% (N = 5579) are traded globally. Trade is strongly phylogenetically conserved, and the hotspots of this trade are concentrated in the biologically diverse tropics. Using different assessment approaches, we predict that, owing to their phylogenetic replacement and trait similarity to currently traded species, future trade will affect up to 3196 additional species-totaling 8775 species at risk of extinction from trade. Our assessment underscores the need for a strategic plan to combat trade with policies that are proactive rather than reactive, which is especially important because species can quickly transition from being safe to being endangered as humans continue to harvest and trade across the tree of life.


Asunto(s)
Animales Salvajes , Comercio , Especies en Peligro de Extinción , Anfibios , Animales , Animales Salvajes/clasificación , Biodiversidad , Aves , Conservación de los Recursos Naturales , Humanos , Mamíferos , Mascotas , Filogenia , Reptiles
10.
Ecol Evol ; 6(23): 8502-8514, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28031802

RESUMEN

There is an increasing interest in measuring loss of phylogenetic diversity and evolutionary distinctiveness which together depict the evolutionary history of conservation interest. Those losses are assessed through the evolutionary relationships between species and species threat status or extinction probabilities. Yet, available information is not always sufficient to quantify the threat status of species that are then classified as data deficient. Data-deficient species are a crucial issue as they cause incomplete assessments of the loss of phylogenetic diversity and evolutionary distinctiveness. We aimed to explore the potential bias caused by data-deficient species in estimating four widely used indices: HEDGE, EDGE, PDloss, and Expected PDloss. Second, we tested four different widely applicable and multitaxa imputation methods and their potential to minimize the bias for those four indices. Two methods are based on a best- vs. worst-case extinction scenarios, one is based on the frequency distribution of threat status within a taxonomic group and one is based on correlates of extinction risks. We showed that data-deficient species led to important bias in predictions of evolutionary history loss (especially high underestimation when they were removed). This issue was particularly important when data-deficient species tended to be clustered in the tree of life. The imputation method based on correlates of extinction risks, especially geographic range size, had the best performance and enabled us to improve risk assessments. Solving threat status of DD species can fundamentally change our understanding of loss of phylogenetic diversity. We found that this loss could be substantially higher than previously found in amphibians, squamate reptiles, and carnivores. We also identified species that are of high priority for the conservation of evolutionary distinctiveness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA