Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L698-L712, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38591125

RESUMEN

Chronic intermittent hypoxia (CIH) is a prevalent condition characterized by recurrent episodes of oxygen deprivation, linked to respiratory and neurological disorders. Prolonged CIH is known to have adverse effects, including endothelial dysfunction, chronic inflammation, oxidative stress, and impaired neuronal function. These factors can contribute to serious comorbidities, including metabolic disorders and cardiovascular diseases. To investigate the molecular impact of CIH, we examined male C57BL/6J mice exposed to CIH for 21 days, comparing with normoxic controls. We used single-nucleus RNA sequencing to comprehensively examine the transcriptomic impact of CIH on key cell classes within the brainstem, specifically excitatory neurons, inhibitory neurons, and oligodendrocytes. These cell classes regulate essential physiological functions, including autonomic tone, cardiovascular control, and respiration. Through analysis of 10,995 nuclei isolated from pontine-medullary tissue, we identified seven major cell classes, further subdivided into 24 clusters. Our findings among these cell classes, revealed significant differential gene expression, underscoring their distinct responses to CIH. Notably, neurons exhibited transcriptional dysregulation of genes associated with synaptic transmission, and structural remodeling. In addition, we found dysregulated genes encoding ion channels and inflammatory response. Concurrently, oligodendrocytes exhibited dysregulated genes associated with oxidative phosphorylation and oxidative stress. Utilizing CellChat network analysis, we uncovered CIH-dependent altered patterns of diffusible intercellular signaling. These insights offer a comprehensive transcriptomic cellular atlas of the pons-medulla and provide a fundamental resource for the analysis of molecular adaptations triggered by CIH.NEW & NOTEWORTHY This study on chronic intermittent hypoxia (CIH) from pons-medulla provides initial insights into the molecular effects on excitatory neurons, inhibitory neurons, and oligodendrocytes, highlighting our unbiased approach, in comparison with earlier studies focusing on single target genes. Our findings reveal that CIH affects cell classes distinctly, and the dysregulated genes in distinct cell classes are associated with synaptic transmission, ion channels, inflammation, oxidative stress, and intercellular signaling, advancing our understanding of CIH-induced molecular responses.


Asunto(s)
Hipoxia , Ratones Endogámicos C57BL , Neuronas , Oligodendroglía , Transcriptoma , Animales , Oligodendroglía/metabolismo , Ratones , Masculino , Hipoxia/metabolismo , Hipoxia/genética , Neuronas/metabolismo , Neuronas/patología , Tronco Encefálico/metabolismo
2.
J Neurosci ; 41(21): 4732-4747, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33863785

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder anatomically characterized by a progressive loss of dopaminergic neurons in the substantia nigra compacta (SNpc). Much less known, yet clinically very important, are the detrimental effects on breathing associated with this disease. Consistent with the human pathophysiology, the 6-hydroxydopamine hydrochloride (6-OHDA) rodent model of PD shows reduced respiratory frequency (fR) and NK1r-immunoreactivity in the pre-Bötzinger complex (preBötC) and PHOX2B+ neurons in the retrotrapezoid nucleus (RTN). To unravel mechanisms that underlie bradypnea in PD, we employed a transgenic approach to label or stimulate specific neuron populations in various respiratory-related brainstem regions. PD mice were characterized by a pronounced decreased number of putatively rhythmically active excitatory neurons in the preBötC and adjacent ventral respiratory column (VRC). Specifically, the number of Dbx1 and Vglut2 neurons was reduced by 47.6% and 17.3%, respectively. By contrast, inhibitory Vgat+ neurons in the VRC, as well as neurons in other respiratory-related brainstem regions, showed relatively minimal or no signs of neuronal loss. Consistent with these anatomic observations, optogenetic experiments identified deficits in respiratory function that were specific to manipulations of excitatory (Dbx1/Vglut2) neurons in the preBötC. We conclude that the decreased number of this critical population of respiratory neurons is an important contributor to the development of irregularities in inspiratory rhythm generation in this mouse model of PD.SIGNIFICANCE STATEMENT We found a decreased number of a specific population of medullary neurons which contributes to breathing abnormalities in a mouse model of Parkinson's disease (PD).


Asunto(s)
Neuronas/patología , Trastornos Parkinsonianos/fisiopatología , Trastornos Respiratorios/fisiopatología , Centro Respiratorio/fisiopatología , Animales , Femenino , Inhalación/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Trastornos Parkinsonianos/complicaciones , Trastornos Parkinsonianos/patología , Trastornos Respiratorios/etiología , Trastornos Respiratorios/patología , Centro Respiratorio/patología
3.
J Neurophysiol ; 125(3): 699-719, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33427575

RESUMEN

Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.


Asunto(s)
Células Quimiorreceptoras/fisiología , Bulbo Raquídeo/fisiología , Receptores de Neurotransmisores/fisiología , Mecánica Respiratoria/fisiología , Adenosina Trifosfato/fisiología , Animales , Neuronas Colinérgicas/fisiología , Humanos , Bulbo Raquídeo/citología , Receptores Purinérgicos/fisiología , Respiración , Neuronas Serotoninérgicas/fisiología
4.
J Neurophysiol ; 123(5): 1933-1943, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32267190

RESUMEN

The parafacial respiratory group (pFRG), located in the lateral aspect of the rostroventral lateral medulla, has been described as a conditional expiratory oscillator that emerges mainly in conditions of high metabolic challenges to increase breathing. The convergence of inhibitory and excitatory inputs to pFRG and the generation of active expiration may be more complex than previously thought. We hypothesized that the medullary raphe, a region that has long been described to be involved in breathing activity, is also responsible for the expiratory activity under hypercapnic condition. To test this hypothesis, we performed anatomical and physiological experiments in urethane-anesthetized adult male Wistar rats. Our data showed anatomical projections from serotonergic (5-HT-ergic) and GABAergic neurons of raphe magnus (RMg) and obscurus (ROb) to the pFRG region. Pharmacological inhibition of RMg or ROb with muscimol (60 pmol/30 nL) did not change the frequency or amplitude of diaphragm activity and did not generate active expiration. However, under hypercapnia (9-10% CO2), the inhibition of RMg or ROb increased the amplitude of abdominal activity, without changing the increased amplitude of diaphragm activity. Depletion of serotonergic neurons with saporin anti-SERT injections into ROb and RMg did not increase the amplitude of abdominal activity during hypercapnia. These results show that the presumably GABAergic neurons within the RMg and ROb may be the inhibitory source to modulate the activity of pFRG during hypercapnia condition.NEW & NOTEWORTHY Medullary raphe has been involved in the inspiratory response to central chemoreflex; however, these reports have never addressed the role of raphe neurons on active expiration induced by hypercapnia. Here, we showed that a subset of GABA cells within the medullary raphe directly project to the parafacial respiratory region, modulating active expiration under high levels of CO2.


Asunto(s)
Espiración/fisiología , Neuronas GABAérgicas/fisiología , Hipercapnia/fisiopatología , Bulbo Raquídeo/fisiología , Red Nerviosa/fisiología , Núcleos del Rafe/fisiología , Animales , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Wistar , Neuronas Serotoninérgicas/fisiología
5.
J Physiol ; 597(24): 5799-5820, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31642520

RESUMEN

KEY POINTS: A strong association between disordered breathing patterns, elevated sympathetic activity, and enhanced central chemoreflex drive has been shown in experimental and human heart failure (HF). The aim of this study was to determine the contribution of catecholaminergic rostral ventrolateral medulla catecholaminergic neurones (RVLM-C1) to both haemodynamic and respiratory alterations in HF. Apnoea/hypopnoea incidence (AHI), breathing variability, respiratory-cardiovascular coupling, cardiac autonomic control and cardiac function were analysed in HF rats with or without selective ablation of RVLM-C1 neurones. Partial lesion (∼65%) of RVLM-C1 neurones reduces AHI, respiratory variability, and respiratory-cardiovascular coupling in HF rats. In addition, the deleterious effects of central chemoreflex activation on cardiac autonomic balance and cardiac function in HF rats was abolished by ablation of RVLM-C1 neurones. Our findings suggest that RVLM-C1 neurones play a pivotal role in breathing irregularities in volume overload HF, and mediate the sympathetic responses induced by acute central chemoreflex activation. ABSTRACT: Rostral ventrolateral medulla catecholaminergic neurones (RVLM-C1) modulate sympathetic outflow and breathing under normal conditions. Heart failure (HF) is characterized by chronic RVLM-C1 activation, increased sympathetic activity and irregular breathing patterns. Despite studies showing a relationship between RVLM-C1 and sympathetic activity in HF, no studies have addressed a potential contribution of RVLM-C1 neurones to irregular breathing in this context. Thus, the aim of this study was to determine the contribution of RVLM-C1 neurones to irregular breathing patterns in HF. Sprague-Dawley rats underwent surgery to induce volume overload HF. Anti-dopamine ß-hydroxylase-saporin toxin (DßH-SAP) was used to selectively lesion RVLM-C1 neurones. At 8 weeks post-HF induction, breathing pattern, blood pressures (BP), respiratory-cardiovascular coupling (RCC), central chemoreflex function, cardiac autonomic control and cardiac function were studied. Reduction (∼65%) of RVLM-C1 neurones resulted in attenuation of irregular breathing, decreased apnoea-hypopnoea incidence (11.1 ± 2.9 vs. 6.5 ± 2.5 events h-1 ; HF+Veh vs. HF+DßH-SAP; P < 0.05) and improved cardiac autonomic control in HF rats. Pathological RCC was observed in HF rats (peak coherence >0.5 between breathing and cardiovascular signals) and was attenuated by DßH-SAP treatment (coherence: 0.74 ± 0.12 vs. 0.54 ± 0.10, HF+Veh vs. HF+DßH-SAP rats; P < 0.05). Central chemoreflex activation had deleterious effects on cardiac function and cardiac autonomic control in HF rats that were abolished by lesion of RVLM-C1 neurones. Our findings reveal that RVLM-C1 neurones play a major role in irregular breathing patterns observed in volume overload HF and highlight their contribution to cardiac dysautonomia and deterioration of cardiac function during chemoreflex activation.


Asunto(s)
Catecolaminas/metabolismo , Insuficiencia Cardíaca/fisiopatología , Bulbo Raquídeo/metabolismo , Neuronas/fisiología , Respiración , Animales , Masculino , Bulbo Raquídeo/citología , Bulbo Raquídeo/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Reflejo , Saporinas/toxicidad
6.
Am J Physiol Lung Cell Mol Physiol ; 317(3): L402-L413, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31242022

RESUMEN

Active expiration (AE) is part of the breathing phase; it is conditional and occurs when we increase our metabolic demand, such as during hypercapnia, hypoxia, or exercise. The parafacial respiratory group (pFRG) is involved in AE. Data from the literature suggest that excitatory and the absence of inhibitory inputs to the pFRG are necessary to determine AE. However, the source of the inputs to the pFRG that trigger AE remains unclear. We show in adult urethane-anesthetized Wistar rats that the pharmacological inhibition of the medial aspect of the nucleus of the solitary tract (mNTS) or the rostral aspect of the pedunculopontine tegmental nucleus (rPPTg) is able to generate AE. In addition, direct inhibitory projection from the mNTS or indirect cholinergic projection from the rPPTg is able to contact pFRG to trigger AE. The inhibition of the mNTS or the rPPTg under conditions of high metabolic demand, such as hypercapnia (9-10% CO2), did not affect the AE. The present results suggest for the first time that inhibitory sources from the mNTS and a cholinergic pathway from the rPPTg, involving M2/M4 muscarinic receptors, could be important sources to modulate and sustain AE.


Asunto(s)
Espiración/fisiología , Hipercapnia/metabolismo , Bulbo Raquídeo/metabolismo , Neuronas/metabolismo , Animales , Hipercapnia/fisiopatología , Masculino , Ratas Wistar , Respiración
8.
Clin Sci (Lond) ; 133(3): 393-405, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30626730

RESUMEN

Activation of the sympathetic nervous system is a hallmark of heart failure (HF) and is positively correlated with disease progression. Catecholaminergic (C1) neurons located in the rostral ventrolateral medulla (RVLM) are known to modulate sympathetic outflow and are hyperactivated in volume overload HF. However, there is no conclusive evidence showing a contribution of RVLM-C1 neurons to the development of cardiac dysfunction in the setting of HF. Therefore, the aim of this study was to determine the role of RVLM-C1 neurons in cardiac autonomic control and deterioration of cardiac function in HF rats. A surgical arteriovenous shunt was created in adult male Sprague-Dawley rats to induce HF. RVLM-C1 neurons were selectively ablated using cell-specific immunotoxin (dopamine-ß hydroxylase saporin [DßH-SAP]) and measures of cardiac autonomic tone, function, and arrhythmia incidence were evaluated. Cardiac autonomic imbalance, arrhythmogenesis and cardiac dysfunction were present in HF rats and improved after DßH-SAP toxin treatment. Most importantly, the progressive decline in fractional shortening observed in HF rats was reduced by DßH-SAP toxin. Our results unveil a pivotal role played by RVLM-C1 neurons in cardiac autonomic imbalance, arrhythmogenesis and cardiac dysfunction in volume overload-induced HF.


Asunto(s)
Tronco Encefálico/citología , Insuficiencia Cardíaca/fisiopatología , Corazón/fisiología , Neuronas/fisiología , Animales , Sistema Nervioso Autónomo/fisiopatología , Tronco Encefálico/fisiopatología , Humanos , Masculino , Bulbo Raquídeo/citología , Ratas , Ratas Sprague-Dawley , Sistema Nervioso Simpático/fisiopatología
9.
Exp Physiol ; 104(5): 729-739, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30758090

RESUMEN

NEW FINDINGS: What is the central question of this study? Clinical reports have described and suggested central and peripheral respiratory abnormalities in Parkinson's disease (PD) patients; however, these reports have never addressed the occurrence of these abnormalities in an animal model. What is the main finding and its importance? A mouse model of PD has reduced neurokinin-1 receptor immunoreactivity in the pre-BÓ§tzinger complex and Phox2b-expressing neurons in the retrotrapezoid nucleus. The PD mouse has impairments of respiratory frequency and the hypercapnic ventilatory response. Lung collagen deposition and ribcage stiffness appear in PD mice. ABSTRACT: Parkinson's disease (PD) is a neurodegenerative motor disorder characterized by dopaminergic deficits in the brain. Parkinson's disease patients may experience shortness of breath, dyspnoea, breathing difficulties and pneumonia, which can be linked as a cause of morbidity and mortality of those patients. The aim of the present study was to clarify whether a mouse model of PD could develop central brainstem and lung respiratory abnormalities. Adult male C57BL/6 mice received bilateral injections of 6-hydroxydopamine (10 µg µl-1 ; 0.5 µl) or vehicle into the striatum. Ventilatory parameters were assessed in the 40 days after induction of PD, by whole-body plethysmography. In addition, measurements of respiratory input impedance (closed and opened thorax) were performed. 6-Hydroxydopamine reduced the number of tyrosine hydroxylase neurons in the substantia nigra pars compacta, the density of neurokinin-1 receptor immunoreactivity in the pre-BÓ§tzinger complex and the number of Phox2b neurons in the retrotrapezoid nucleus. Physiological experiments revealed a reduction in resting respiratory frequency in PD animals, owing to an increase in expiratory time and a blunted hypercapnic ventilatory response. Measurements of respiratory input impedance showed that only PD animals with the thorax preserved had increased viscance, indicating that the ribcage could be stiff in this animal model of PD. Consistent with stiffened ribcage mechanics, abnormal collagen deposits in alveolar septa and airways were observed in PD animals. Our data showed that our mouse model of PD presented with neurodegeneration in respiratory brainstem centres and disruption of lung mechanical properties, suggesting that both central and peripheral deficiencies contribute to PD-related respiratory pathologies.


Asunto(s)
Enfermedad de Parkinson Secundaria/fisiopatología , Trastornos Respiratorios/etiología , Trastornos Respiratorios/fisiopatología , Animales , Fenómenos Biomecánicos , Colágeno/metabolismo , Hipercapnia/fisiopatología , Pulmón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Microinyecciones , Neostriado , Oxidopamina , Enfermedad de Parkinson Secundaria/inducido químicamente , Pletismografía , Alveolos Pulmonares/metabolismo , Frecuencia Respiratoria , Costillas/fisiopatología
10.
J Neurophysiol ; 116(3): 1024-35, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27306669

RESUMEN

Chemosensitive neurons in the retrotrapezoid nucleus (RTN) regulate breathing in response to CO2/H(+) changes and serve as an integration center for other autonomic centers, including brain stem noradrenergic neurons. Norepinephrine (NE) contributes to respiratory control and chemoreception, and, since disruption of NE signaling may contribute to several breathing disorders, we sought to characterize effects of NE on RTN chemoreception. All neurons included in this study responded similarly to CO2/H(+) but showed differential sensitivity to NE; we found that NE activated (79%), inhibited (7%), or had no effect on activity (14%) of RTN chemoreceptors. The excitatory effect of NE on RTN chemoreceptors was dose dependent, retained in the presence of neurotransmitter receptor blockers, and could be mimicked and blocked by pharmacological manipulation of α1-adrenergic receptors (ARs). In addition, NE-activation was blunted by XE991 (KCNQ channel blocker), and partially occluded the firing response to serotonin, suggesting involvement of KCNQ channels. However, in whole cell voltage clamp, activation of α1-ARs decreased outward current and conductance by what appears to be a mixed effect on multiple channels. The inhibitory effect of NE on RTN chemoreceptors was blunted by an α2-AR antagonist. A third group of RTN chemoreceptors was insensitive to NE. We also found that chemosensitive RTN astrocytes do not respond to NE with a change in voltage or by releasing ATP to enhance activity of chemosensitive neurons. These results indicate NE modulates subsets of RTN chemoreceptors by mechanisms involving α1- and α2-ARs.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Células Quimiorreceptoras/efectos de los fármacos , Células Quimiorreceptoras/fisiología , Norepinefrina/metabolismo , Receptores Adrenérgicos/metabolismo , Centro Respiratorio/citología , Adrenérgicos/farmacología , Análisis de Varianza , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Dióxido de Carbono/farmacología , Relación Dosis-Respuesta a Droga , Técnicas In Vitro , Neurotransmisores/farmacología , Norepinefrina/farmacología , Técnicas de Placa-Clamp , Ratas , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología
11.
J Neurophysiol ; 116(3): 1036-48, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27306670

RESUMEN

Norepinephrine (NE) is a potent modulator of breathing that can increase/decrease respiratory activity by α1-/α2-adrenergic receptor (AR) activation, respectively. The retrotrapezoid nucleus (RTN) is known to contribute to central chemoreception, inspiration, and active expiration. Here we investigate the sources of catecholaminergic inputs to the RTN and identify respiratory effects produced by activation of ARs in this region. By injecting the retrograde tracer Fluoro-Gold into the RTN, we identified back-labeled catecholaminergic neurons in the A7 region. In urethane-anesthetized, vagotomized, and artificially ventilated male Wistar rats unilateral injection of NE or moxonidine (α2-AR agonist) blunted diaphragm muscle activity (DiaEMG) frequency and amplitude, without changing abdominal muscle activity. Those inhibitory effects were reduced by preapplication of yohimbine (α2-AR antagonist) into the RTN. Conversely, unilateral RTN injection of phenylephrine (α1-AR agonist) increased DiaEMG amplitude and frequency and facilitated active expiration. This response was blocked by prior RTN injection of prazosin (α1-AR antagonist). Interestingly, RTN injection of propranolol (ß-AR antagonist) had no effect on respiratory inhibition elicited by applications of NE into the RTN; however, the combined blockade of α2- and ß-ARs (coapplication of propranolol and yohimbine) revealed an α1-AR-dependent excitatory response to NE that resulted in increase in DiaEMG frequency and facilitation of active expiration. However, blockade of α1-, α2-, or ß-ARs in the RTN had minimal effect on baseline respiratory activity, on central or peripheral chemoreflexes. These results suggest that NE signaling can modulate RTN chemoreceptor function; however, endogenous NE signaling does not contribute to baseline breathing or the ventilatory response to central or peripheral chemoreceptor activity in urethane-anesthetized rats.


Asunto(s)
Anestesia , Células Quimiorreceptoras/fisiología , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Respiración , Centro Respiratorio/citología , Potenciales de Acción/efectos de los fármacos , Adrenérgicos/farmacología , Animales , Células Quimiorreceptoras/efectos de los fármacos , Diafragma/fisiología , Inhibidores Enzimáticos , Masculino , Norepinefrina/farmacología , Cianuro de Potasio/farmacología , Ratas , Ratas Wistar , Respiración/efectos de los fármacos , Centro Respiratorio/diagnóstico por imagen , Estilbamidinas/metabolismo , Vagotomía
12.
Int J Exp Pathol ; 96(3): 133-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25664386

RESUMEN

The aim of this study was to determine the effects of previous administration of metyrapone (met) on the acute lung injury (ALI) induced by caecal ligation and puncture (CLP) and to explore met's relationship with endogenous glucocorticoids (GCs) as measured by inflammatory, oxidative and functional parameters. One hundred and thirty-five Wistar rats were divided into three main groups: Control (Naïve), Sham and CLP. The animals received pretreatment one hour before surgery. The Naïve group did not undergo any procedure or pretreatment. The Sham group only had the caecum exposed and was pretreated with saline. The CLP group was divided into three pretreatments: metyrapone (CLP met 50 mg/kg i.p.), dexamethasone (CLP dex 0.5 mg/kg i.p.) or saline (CLP sal equivalent volume of 0.9% NaCl). Analyses were performed after 6 and 24 h of sepsis. Previous administration of met significantly increased inflammatory cells, as well as myeloperoxidase (MPO) activity in the lung tissue and alveolar collapsed area, with consequent impairment of respiratory mechanics being observed compared to Sham and Naïve; CLP sal exhibited similar results to those of met. The met reduced corticosterone (CCT) levels and dramatically increased hydrogen peroxide (H2 O2 ) levels in the lung tissue compared to CLP sal. Our results suggest that previous administration of met may have contributed to increased pulmonary oxidative stress and increased mortality by mechanisms dependent of endogenous GC.


Asunto(s)
Lesión Pulmonar Aguda/inducido químicamente , Corticosterona/biosíntesis , Inhibidores Enzimáticos/toxicidad , Pulmón/efectos de los fármacos , Metirapona/toxicidad , Choque Séptico/complicaciones , Esteroide 11-beta-Hidroxilasa/antagonistas & inhibidores , Lesión Pulmonar Aguda/sangre , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/fisiopatología , Animales , Corticosterona/sangre , Modelos Animales de Enfermedad , Regulación hacia Abajo , Peróxido de Hidrógeno/metabolismo , Mediadores de Inflamación/metabolismo , Pulmón/metabolismo , Pulmón/patología , Pulmón/fisiopatología , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Mecánica Respiratoria/efectos de los fármacos , Esteroide 11-beta-Hidroxilasa/metabolismo , Factores de Tiempo
13.
Respir Physiol Neurobiol ; 320: 104201, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38043841

RESUMEN

Respiration is regulated by various types of neurons located in the pontine-medullary regions. The Kölliker-Fuse (KF)/A7 noradrenergic neurons play a role in modulating the inspiratory cycle by influencing the respiratory output. These neurons are interconnected and may also project to brainstem and spinal cord, potentially involved in regulating the post-inspiratory phase. In the present study, we hypothesize that the parafacial (pF) neurons, in conjunction with adrenergic mechanisms originating from the KF/A7 region, may provide the neurophysiological basis for breathing modulation. We conducted experiments using urethane-anesthetized, vagotomized, and artificially ventilated male Wistar rats. Injection of L-glutamate into the KF/A7 region resulted in inhibition of inspiratory activity, and a prolonged and high-amplitude genioglossal activity (GGEMG). Blockade of the α1 adrenergic receptors (α1-AR) or the ionotropic glutamatergic receptors in the pF region decrease the activity of the GGEMG without affecting inspiratory cessation. In contrast, blockade of α2-AR in the pF region extended the duration of GG activity. Notably, the inspiratory and GGEMG activities induced by KF/A7 stimulation were completely blocked by bilateral blockade of glutamatergic receptors in the Bötzinger complex (BötC). While our study found a limited role for α1 and α2 adrenergic receptors at the pF level in modulating the breathing response to KF/A7 stimulation, it became evident that BötC neurons are responsible for the respiratory effects induced by KF/A7 stimulation.


Asunto(s)
Bulbo Raquídeo , Respiración , Ratas , Animales , Masculino , Ratas Wistar , Frecuencia Respiratoria , Puente/fisiología , Receptores Adrenérgicos
14.
Elife ; 122024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38655918

RESUMEN

Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder that results in multiple bouts of intermittent hypoxia. OSA has many neurological and systemic comorbidities, including dysphagia, or disordered swallow, and discoordination with breathing. However, the mechanism in which chronic intermittent hypoxia (CIH) causes dysphagia is unknown. Recently, we showed the postinspiratory complex (PiCo) acts as an interface between the swallow pattern generator (SPG) and the inspiratory rhythm generator, the preBötzinger complex, to regulate proper swallow-breathing coordination (Huff et al., 2023). PiCo is characterized by interneurons co-expressing transporters for glutamate (Vglut2) and acetylcholine (ChAT). Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly disrupts swallow behavior via triggering variable swallow motor patterns. This suggests that glutamatergic-cholinergic neurons in PiCo are not only critical for the regulation of swallow-breathing coordination, but also play an important role in the modulation of swallow motor patterning. Our study also suggests that swallow disruption, as seen in OSA, involves central nervous mechanisms interfering with swallow motor patterning and laryngeal activation. These findings are crucial for understanding the mechanisms underlying dysphagia, both in OSA and other breathing and neurological disorders.


Asunto(s)
Deglución , Hipoxia , Animales , Ratones , Deglución/fisiología , Hipoxia/metabolismo , Hipoxia/fisiopatología , Masculino , Optogenética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Apnea Obstructiva del Sueño/fisiopatología , Apnea Obstructiva del Sueño/metabolismo , Neuronas Colinérgicas/fisiología , Neuronas Colinérgicas/metabolismo , Interneuronas/fisiología , Interneuronas/metabolismo , Respiración , Femenino
15.
Front Neurosci ; 18: 1386737, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774786

RESUMEN

The sympathetic nervous system modulates arterial blood pressure. Individuals with obstructive sleep apnea (OSA) experience numerous nightly hypoxic episodes and exhibit elevated sympathetic activity to the cardiovascular system leading to hypertension. This suggests that OSA disrupts normal respiratory-sympathetic coupling. This study investigates the role of the postinspiratory complex (PiCo) and preBötzinger complex (preBötC) in respiratory-sympathetic coupling under control conditions and following exposure to chronic intermittent hypoxia (CIH) for 21 days (5% O2-80 bouts/day). The surface of the ventral brainstem was exposed in urethane (1.5 g/kg) anesthetized, spontaneously breathing adult mice. Cholinergic (ChAT), glutamatergic (Vglut2), and neurons that co-express ChAT and Vglut2 at PiCo, as well as Dbx1 and Vglut2 neurons at preBötC, were optogenetically stimulated while recording activity from the diaphragm (DIA), vagus nerve (cVN), and cervical sympathetic nerve (cSN). Following CIH exposure, baseline cSN activity increased, breathing frequency increased, and expiratory time decreased. In control mice, stimulating PiCo specific cholinergic-glutamatergic neurons caused a sympathetic burst during all phases of the respiratory cycle, whereas optogenetic activation of cholinergic-glutamatergic PiCo neurons in CIH mice increased sympathetic activity only during postinspiration and late expiration. Stimulation of glutamatergic PiCo neurons increased cSN activity during the postinspiratory phase in control and CIH mice. Optogenetic stimulation of ChAT containing neurons in the PiCo area did not affect sympathetic activity under control or CIH conditions. Stimulating Dbx1 or Vglut2 neurons in preBötC evoked an inspiration and a concomitant cSN burst under control and CIH conditions. Taken together, these results suggest that PiCo and preBötC contribute to respiratory-sympathetic coupling, which is altered by CIH, and may contribute to the hypertension observed in patients with OSA.

16.
Behav Brain Res ; 462: 114873, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38266776

RESUMEN

Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the Substantia nigra pars compacta (SNpc), which leads to motor and non-motor symptoms (NMS). NMS can appear many years before the classical motor symptoms and are associated with the neurodegeneration of several nuclei; in this work, we highlight the neurodegeneration of Locus coeruleus (LC) in PD. The aim was to investigate the effects of depleting SNpc and LC catecholaminergic neurons on behavioral and neurobiological endpoints. Here we used 6-hydroxydopamine (6-OHDA) in order to induced neurotoxic damage in three independent experimental groups: SNpc lesion group, which 6-OHDA was injected into CPu (CPu-6-OHDA), LC lesion group, which 6-OHDA was injected directly on LC to selectively caused a damage on this nucleus (LC-6-OHDA), and the combined SNpc and LC lesion group (CL-6-OHDA). Next, the behavioral studies were performed using the Morris water maze (MWM), open field (OF), and elevated plus maze (EPM). After stereotaxic surgeries, the animals showed a loss of 67% and 77% of Tyrosine hydroxylase (TH) reactive neurons in the SNpc and LC, respectively. The behavioral analysis showed the anxiety-like behavior in CL-6-OHDA group in the EPM test; in the MWM test, the combined lesions (CL-6-OHDA) showed an impairment in memory acquisition and spatial memory; and no changes were observed in locomotor activity in all the tests. Furthermore, our investigation demonstrating the effects of depleting SN and LC catecholaminergic neurons on behavioral and neurobiological parameters. All these data together lead us to believe that a bilateral PD model including a LC bilateral degeneration is potentially a more accurate model to evaluate the NMS in the pathological development of the disease in rodents.


Asunto(s)
Enfermedad de Parkinson , Animales , Oxidopamina/toxicidad , Enfermedad de Parkinson/metabolismo , Roedores , Locus Coeruleus/metabolismo , Neuronas Dopaminérgicas , Sustancia Negra/metabolismo , Modelos Animales de Enfermedad
17.
Brain Res ; 1822: 148586, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37757967

RESUMEN

Parkinson's Disease (PD) is characterized by classic motor symptoms related to movement, but PD patients can experience symptoms associated with impaired autonomic function, such as respiratory disturbances. Functional respiratory deficits are known to be associated with brainstem neurodegeneration in the mice model of PD induced by 6-hydroxydopamine (6-OHDA). Understanding the causes of neuronal death is essential for identifying specific targets to prevent degeneration. Many mechanisms can explain why neurons die in PD, and neuroinflammation is one of them. To test the influence of inflammation, mediated by microglia and astrocytes cells, in the respiratory disturbances associated with brainstem neurons death, we submitted wild-type (WT) and TNF receptor 1 (TNFR1) knockout male mice to the 6-OHDA model of PD. Also, male C57BL/6 animals were induced using the same PD model and treated with minocycline (45 mg/kg), a tetracycline antibiotic with anti-inflammatory properties. We show that degeneration of brainstem areas such as the retrotrapezoid nucleus (RTN) and the pre-Botzinger Complex (preBotC) were prevented in both protocols. Notably, respiratory disturbances were no longer observed in the animals where inflammation was suppressed. Thus, the data demonstrate that inflammation is responsible for the breathing impairment in the 6-OHDA-induced PD mouse model.


Asunto(s)
Enfermedad de Parkinson , Humanos , Ratones , Animales , Masculino , Oxidopamina/farmacología , Receptores Tipo I de Factores de Necrosis Tumoral , Enfermedades Neuroinflamatorias , Ratones Endogámicos C57BL , Inflamación/complicaciones , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas
18.
Med Biol Eng Comput ; 62(6): 1869-1885, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38403862

RESUMEN

Since the first electroencephalogram (EEG) was obtained, there have been many possibilities to use it as a tool to access brain cognitive dynamics. Mathematical (Math) problem solving is one of the most important cortical processes, but it is still far from being well understood. EEG is an inexpensive and simple indirect measure of brain operation, but only recently has low-cost equipment (mobile EEG) allowed sophisticated analyses in non-clinical settings. The main purpose of this work is to study EEG activation during a Math task in a realistic environment, using mobile EEG. A matching pursuit (MP)-based signal analysis technique was employed, since MP properties render it a priori suitable to study induced EEG activity over long time sequences, when it is not tightly locked to a given stimulus. The study sample comprised sixty healthy volunteers. Unlike the majority of previous studies, subjects were studied in a sitting position with their eyes open. They completed a written Math task outside the EEG lab, wearing a mobile EEG device (EPOC+). Theta [4 Hz-7.5 Hz], alpha (7.5 Hz-13 Hz] and 0.5 Hz micro-bands in the [0.5 Hz-20 Hz] range were studied with a low-density stochastic MP dictionary. Over 1-min windows, ongoing EEG alpha and theta activity was decomposed into numerous MP atoms with median duration around 3 s, similar to the duration of induced, time-locked activity obtained with event-related (des)synchronization (ERS/ERD) studies. Relative to Rest, there was lower right-side and posterior MP alpha atom/min during Math, whereas MP theta atom/min was significantly higher on anteriorly located electrodes, especially on the left side. MP alpha findings were particularly significant on a narrow range around 10 Hz-10.5 Hz, consistent with FFT alpha peak findings from ERS/ERD studies. With a streamlined protocol, these results replicate previous findings of EEG alpha and theta activation obtained during Math tasks with different signal analysis techniques and in different time frames. The efficient application to real-world, noisy EEG data with a low-resolution stochastic MP dictionary shows that this technique is very encouraging. These results provide support for studies of mathematical cognition with mobile EEG and matching pursuit.


Asunto(s)
Ritmo alfa , Electroencefalografía , Humanos , Electroencefalografía/métodos , Femenino , Masculino , Adulto , Ritmo alfa/fisiología , Procesamiento de Señales Asistido por Computador , Ritmo Teta/fisiología , Adulto Joven , Encéfalo/fisiología , Matemática
19.
Nutr Neurosci ; 16(3): 104-12, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23321577

RESUMEN

The objective of this study was to compare the effects of the tactile/handling stimulation (H) and environmental enrichment (EE) in well-nourished (C - 16% of protein) and malnourished (M - 6% of protein) rats tested in the elevated plus-maze (EPM) at 36 and 37 days of age. The results showed higher exploration of the open arms in the EPM in M as compared with C animals, as well as lower index of risk assessment behaviors, and EE, but not H, reversed the alterations produced by malnutrition in the EPM. Biochemical analysis showed higher levels of corticosterone in M when compared with C rats. The non-stimulated animals presented higher levels of polyamines in the hippocampus when compared with the stimulated ones in both diet conditions. It is suggested that both the lower anxiety levels and the lower risk-assessment behaviors in the EPM, as well as the higher levels of corticosterone, can be due to alterations in the activity of the hypothalamic-pituitary-adrenal axis as the result of early protein malnutrition.


Asunto(s)
Ambiente , Conducta Exploratoria , Aprendizaje por Laberinto , Desnutrición Proteico-Calórica/patología , Animales , Conducta Animal/fisiología , Peso Corporal , Corticosterona/sangre , Dieta , Hipocampo/química , Sistema Hipotálamo-Hipofisario/metabolismo , Masculino , Sistema Hipófiso-Suprarrenal/metabolismo , Poliaminas/metabolismo , Ratas , Ratas Wistar
20.
Elife ; 122023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37272425

RESUMEN

Breathing needs to be tightly coordinated with upper airway behaviors, such as swallowing. Discoordination leads to aspiration pneumonia, the leading cause of death in neurodegenerative disease. Here, we study the role of the postinspiratory complex (PiCo) in coordinating breathing and swallowing. Using optogenetic approaches in freely breathing anesthetized ChATcre:Ai32, Vglut2cre:Ai32 and intersectional recombination of ChATcre:Vglut2FlpO:ChR2 mice reveals PiCo mediates airway protective behaviors. Activation of PiCo during inspiration or the beginning of postinspiration triggers swallow behavior in an all-or-nothing manner, while there is a higher probability for stimulating only laryngeal activation when activated further into expiration. Laryngeal activation is dependent on stimulation duration. Sufficient bilateral PiCo activation is necessary for preserving the physiological swallow motor sequence since activation of only a few PiCo neurons or unilateral activation leads to blurred upper airway behavioral responses. We believe PiCo acts as an interface between the swallow pattern generator and the preBötzinger complex to coordinate swallow and breathing. Investigating PiCo's role in swallow and laryngeal coordination will aid in understanding discoordination with breathing in neurological diseases.


Asunto(s)
Laringe , Enfermedades Neurodegenerativas , Ratones , Animales , Respiración , Espiración/fisiología , Sistema Respiratorio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA