Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(46): 16274-9, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25368144

RESUMEN

Negamycin is a natural product with broad-spectrum antibacterial activity and efficacy in animal models of infection. Although its precise mechanism of action has yet to be delineated, negamycin inhibits cellular protein synthesis and causes cell death. Here, we show that single point mutations within 16S rRNA that confer resistance to negamycin are in close proximity of the tetracycline binding site within helix 34 of the small subunit head domain. As expected from its direct interaction with this region of the ribosome, negamycin was shown to displace tetracycline. However, in contrast to tetracycline-class antibiotics, which serve to prevent cognate tRNA from entering the translating ribosome, single-molecule fluorescence resonance energy transfer investigations revealed that negamycin specifically stabilizes near-cognate ternary complexes within the A site during the normally transient initial selection process to promote miscoding. The crystal structure of the 70S ribosome in complex with negamycin, determined at 3.1 Å resolution, sheds light on this finding by showing that negamycin occupies a site that partially overlaps that of tetracycline-class antibiotics. Collectively, these data suggest that the small subunit head domain contributes to the decoding mechanism and that small-molecule binding to this domain may either prevent or promote tRNA entry by altering the initial selection mechanism after codon recognition and before GTPase activation.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , ARN Bacteriano/efectos de los fármacos , ARN Ribosómico 16S/efectos de los fármacos , Ribosomas/efectos de los fármacos , Aminoácidos Diaminos/farmacología , Antibacterianos/metabolismo , Emparejamiento Base , Sitios de Unión , Unión Competitiva , Cristalografía por Rayos X , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Minociclina/análogos & derivados , Minociclina/farmacología , Modelos Moleculares , Conformación de Ácido Nucleico , Mutación Puntual , Biosíntesis de Proteínas/efectos de los fármacos , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/fisiología , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/fisiología , ARN de Transferencia/metabolismo , Ribosomas/ultraestructura , Resistencia a la Tetraciclina/genética , Tetraciclinas/metabolismo , Tetraciclinas/farmacología , Tigeciclina
2.
Proteins ; 83(9): 1706-19, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26177919

RESUMEN

UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) is the first committed step to form lipid A, an essential component of the outer membrane of Gram-negative bacteria. As it is essential for the survival of many pathogens, LpxC is an attractive target for antibacterial therapeutics. Herein, we report the product-bound co-crystal structure of LpxC from the acheal Aquifex aeolicus solved to 1.6 Å resolution. We identified interactions by hydroxyl and hydroxymethyl substituents of the product glucosamine ring that may enable new insights to exploit waters in the active site for structure-based design of LpxC inhibitors with novel scaffolds. By using this product structure, we have performed quantum mechanical modeling on the substrate in the active site. Based on our results and published experimental data, we propose a new mechanism that may lead to a better understanding of LpxC catalysis and inhibition.


Asunto(s)
Amidohidrolasas/química , Bacterias/enzimología , Proteínas Bacterianas/química , Estructura Terciaria de Proteína , Acetilación , Amidohidrolasas/metabolismo , Proteínas Bacterianas/metabolismo , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Glucosamina/química , Glucosamina/metabolismo , Lípido A/biosíntesis , Modelos Moleculares , Estructura Molecular , Unión Proteica , Teoría Cuántica , Especificidad por Sustrato , Zinc/química , Zinc/metabolismo
4.
Antimicrob Agents Chemother ; 58(9): 5269-79, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24957822

RESUMEN

Streptogramin antibiotics are divided into types A and B, which in combination can act synergistically. We compared the molecular interactions of the streptogramin combinations Synercid (type A, dalfopristin; type B, quinupristin) and NXL 103 (type A, flopristin; type B, linopristin) with the Escherichia coli 70S ribosome by X-ray crystallography. We further analyzed the activity of the streptogramin components individually and in combination. The streptogramin A and B components in Synercid and NXL 103 exhibit synergistic antimicrobial activity against certain pathogenic bacteria. However, in transcription-coupled translation assays, only combinations that include dalfopristin, the streptogramin A component of Synercid, show synergy. Notably, the diethylaminoethylsulfonyl group in dalfopristin reduces its activity but is the basis for synergy in transcription-coupled translation assays before its rapid hydrolysis from the depsipeptide core. Replacement of the diethylaminoethylsulfonyl group in dalfopristin by a nonhydrolyzable group may therefore be beneficial for synergy. The absence of general streptogramin synergy in transcription-coupled translation assays suggests that the synergistic antimicrobial activity of streptogramins can occur independently of the effects of streptogramin on translation.


Asunto(s)
Antibacterianos/uso terapéutico , Biosíntesis de Proteínas/efectos de los fármacos , Estreptograminas/uso terapéutico , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Cristalografía por Rayos X , Combinación de Medicamentos , Sinergismo Farmacológico , Enterococcus faecalis/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Haemophilus influenzae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Ribosomas/efectos de los fármacos , Ribosomas/ultraestructura , Staphylococcus aureus/efectos de los fármacos , Streptococcus pneumoniae/efectos de los fármacos , Estreptogramina A/administración & dosificación , Estreptogramina A/farmacología , Estreptogramina A/uso terapéutico , Estreptogramina B/administración & dosificación , Estreptogramina B/farmacología , Estreptogramina B/uso terapéutico , Estreptograminas/administración & dosificación , Estreptograminas/química , Estreptograminas/farmacología , Virginiamicina/administración & dosificación , Virginiamicina/farmacología , Virginiamicina/uso terapéutico
5.
Protein Expr Purif ; 104: 57-64, 2014 12.
Artículo en Inglés | MEDLINE | ID: mdl-25240855

RESUMEN

In Gram-negative bacteria, the cell wall is surrounded by an outer membrane, the outer leaflet of which is comprised of charged lipopolysaccharide (LPS) molecules. Lipid A, a component of LPS, anchors this molecule to the outer membrane. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a zinc-dependent metalloamidase that catalyzes the first committed step of biosynthesis of Lipid A, making it a promising target for antibiotic therapy. Formation of soluble aggregates of Pseudomonas aeruginosa LpxC protein when overexpressed in Escherichia coli has limited the availability of high quality protein for X-ray crystallography. Expression of LpxC in the presence of an inhibitor dramatically increased protein solubility, shortened crystallization time and led to a high-resolution crystal structure of LpxC bound to the inhibitor. However, this approach required large amounts of compound, restricting its use. To reduce the amount of compound needed, an overexpression strain of E. coli was created lacking acrB, a critical component of the major efflux pump. By overexpressing LpxC in the efflux deficient strain in the presence of LpxC inhibitors, several structures of P. aeruginosa LpxC in complex with different compounds were solved to accelerate structure-based drug design.


Asunto(s)
Amidohidrolasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Pseudomonas aeruginosa/enzimología , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Catálisis , Cromatografía Liquida , Cristalografía por Rayos X , Escherichia coli , Expresión Génica , Espectrometría de Masas , Conformación Proteica , Zinc/química , Zinc/metabolismo
6.
J Am Chem Soc ; 135(12): 4580-3, 2013 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-23480637

RESUMEN

We report a general method for light-assisted control of interactions of PDZ domain binding motifs with their cognate domains by the incorporation of a photolabile caging group onto the essential C-terminal carboxylate binding determinant of the motif. The strategy was implemented and validated for both simple monovalent and biomimetic divalent ligands, which have recently been established as powerful tools for acute perturbation of native PDZ domain-dependent interactions in live cells.


Asunto(s)
Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Dominios PDZ , Péptidos/química , Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Fluorescencia , Colorantes Fluorescentes/síntesis química , Ligandos , Luz , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/síntesis química , Fotólisis , Unión Proteica , Mapeo de Interacción de Proteínas , Ratas
7.
Nat Chem Biol ; 7(2): 81-91, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21186349

RESUMEN

The interactions of the AMPA receptor (AMPAR) auxiliary subunit Stargazin with PDZ domain-containing scaffold proteins such as PSD-95 are critical for the synaptic stabilization of AMPARs. To investigate these interactions, we have developed biomimetic competing ligands that are assembled from two Stargazin-derived PSD-95/DLG/ZO-1 (PDZ) domain-binding motifs using 'click' chemistry. Characterization of the ligands in vitro and in a cellular FRET-based model revealed an enhanced affinity for the multiple PDZ domains of PSD-95 compared to monovalent peptides. In cultured neurons, the divalent ligands competed with transmembrane AMPAR regulatory protein (TARP) for the intracellular membrane-associated guanylate kinase resulting in increased lateral diffusion and endocytosis of surface AMPARs, while showing strong inhibition of synaptic AMPAR currents. This provides evidence for a model in which the TARP-containing AMPARs are stabilized at the synapse by engaging in multivalent interactions. In light of the prevalence of PDZ domain clusters, these new biomimetic chemical tools could find broad application for acutely perturbing multivalent complexes.


Asunto(s)
Biomimética , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Ligandos , Modelos Moleculares
8.
Bioorg Med Chem Lett ; 23(1): 169-73, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23206863

RESUMEN

Thymidylate kinase (TMK) is an essential enzyme for DNA synthesis in bacteria, phosphorylating deoxythymidine monophosphate (dTMP) to deoxythymidine diphosphate (dTDP), and thus is a potential new antibacterial drug target. Previously, we have described the first potent and selective inhibitors of Gram-positive TMK, leading to in vivo validation of the target. Here, a structure-guided design approach based on the initial series led to the discovery of novel sulfonylpiperidine inhibitors of TMK. Formation of hydrogen bonds with Arg48 in Staphylococcus aureus TMK was key to obtaining excellent enzyme affinity, as verified by protein crystallography. Replacement of a methylene linker in the series by a sulfonamide was accomplished with retention of binding conformation. Further optimization of logD yielded phenol derivative 11, a potent inhibitor of TMK showing excellent MICs against a broad spectrum of Gram-positive bacteria and >10(5) selectivity versus the human TMK homologue.


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas/antagonistas & inhibidores , Nucleósido-Fosfato Quinasa/antagonistas & inhibidores , Piperidinas/química , Staphylococcus aureus/enzimología , Sulfonamidas/química , Antibacterianos/síntesis química , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Nucleósido-Fosfato Quinasa/metabolismo , Piperidinas/síntesis química , Piperidinas/farmacología , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/farmacología
9.
Nat Methods ; 6(7): 532-7, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19525958

RESUMEN

Visualizing conformational dynamics in proteins has been difficult, and the atomic-scale motions responsible for the behavior of most allosteric proteins are unknown. Here we report that fluorescence resonance energy transfer (FRET) between a small fluorescent dye and a nickel ion bound to a dihistidine motif can be used to monitor small structural rearrangements in proteins. This method provides several key advantages over classical FRET, including the ability to measure the dynamics of close-range interactions, the use of small probes with short linkers, a low orientation dependence, and the ability to add and remove unique tunable acceptors. We used this 'transition metal ion FRET' approach along with X-ray crystallography to determine the structural changes of the gating ring of the mouse hyperpolarization-activated cyclic nucleotide-regulated ion channel HCN2. Our results suggest a general model for the conformational switch in the cyclic nucleotide-binding site of cyclic nucleotide-regulated ion channels.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Conformación Proteica , Proteínas/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cationes Bivalentes , Cristalografía por Rayos X , AMP Cíclico/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Canales Iónicos/química , Canales Iónicos/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Níquel/química , Péptidos/química , Canales de Potasio , Unión Proteica , Estructura Secundaria de Proteína
10.
Biochemistry ; 49(33): 7227-37, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20604544

RESUMEN

In recent years, the opportunistic pathogen Pseudomonas aeruginosa has emerged as a major source of hospital-acquired infections. Effective treatment has proven increasingly difficult due to the spread of multidrug resistant strains and thus requires a deeper understanding of the biochemical mechanisms of pathogenicity. The central carbohydrate of the P. aeruginosa PAO1 (O5) B-band O-antigen, ManNAc(3NAc)A, has been shown to be critical for virulence and is produced in a stepwise manner by five enzymes in the Wbp pathway (WbpA, WbpB, WbpE, WbpD, and WbpI). Herein, we present the crystal structure of the aminotransferase WbpE from P. aeruginosa PAO1 in complex with the cofactor pyridoxal 5'-phosphate (PLP) and product UDP-GlcNAc(3NH(2))A as the external aldimine at 1.9 A resolution. We also report the structures of WbpE in complex with PMP alone as well as the PLP internal aldimine and show that the dimeric structure of WbpE observed in the crystal structure is confirmed by analytical ultracentrifugation. Analysis of these structures reveals that the active site of the enzyme is composed of residues from both subunits. In particular, we show that a key residue (Arg229), which has previously been implicated in direct interactions with the alpha-carboxylate moiety of alpha-ketoglutarate, is also uniquely positioned to bestow specificity for the 6''-carboxyl group of GlcNAc(3NH(2))A through a salt bridge. This finding is intriguing because while an analogous basic residue is present in WbpE homologues that do not process 6''-carboxyl-modified saccharides, recent structural studies reveal that this side chain is retracted to accommodate a neutral C6'' atom. This work represents the first structural analysis of a nucleotide sugar aminotransferase with a bound product modified at the C2'', C3'', and C6'' positions and provides insight into a novel target for treatment of P. aeruginosa infection.


Asunto(s)
Transferasas de Grupos Nitrogenados/química , Infecciones por Pseudomonas/enzimología , Pseudomonas aeruginosa/enzimología , Fosfato de Piridoxal/metabolismo , Bases de Schiff/metabolismo , Uridina Difosfato Ácido Glucurónico/análogos & derivados , Alanina/genética , Cristalografía por Rayos X , Modelos Moleculares , Mutación , Transferasas de Grupos Nitrogenados/genética , Transferasas de Grupos Nitrogenados/metabolismo , Antígenos O/metabolismo , Unión Proteica , Fosfato de Piridoxal/química , Piridoxamina/análogos & derivados , Piridoxamina/química , Piridoxamina/metabolismo , Bases de Schiff/química , Uridina Difosfato Ácido Glucurónico/química , Uridina Difosfato Ácido Glucurónico/metabolismo
11.
Biochim Biophys Acta ; 1788(9): 1939-49, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19524546

RESUMEN

Investigation of the mechanistic bases and physiological importance of cAMP regulation of HCN channels has exploited an arginine to glutamate mutation in the nucleotide-binding fold, an approach critically dependent on the mutation selectively lowering the channel's nucleotide affinity. In apparent conflict with this, in intact Xenopus oocytes, HCN and HCN-RE channels exhibit qualitatively and quantitatively distinct responses to the tyrosine kinase inhibitor, genistein -- the estrogenic isoflavonoid strongly depolarizes the activation mid-point of HCN1-R538E, but not HCN1 channels (+9.8 mV + or - 0.9 versus +2.2 mV + or - 0.6) and hyperpolarizes gating of HCN2 (-4.8 mV + or - 1.0) but depolarizes gating of HCN2-R591E (+13.2 mV + or - 2.1). However, excised patch recording, X-ray crystallography and modeling reveal that this is not due to either a fundamental effect of the mutation on channel gating per se or of genistein acting as a mutation-sensitive partial agonist at the cAMP site. Rather, we find that genistein equivalently moves both HCN and HCN-RE channels closer to the open state (rendering the channels inherently easier to open but at a cost of decreasing the coupling energy of cAMP) and that the anomaly reflects a balance of these energetic effects with the isoform-specific inhibition of activation by the nucleotide gating ring and relief of this by endogenous cAMP. These findings have specific implications with regard to findings based on HCN-RE channels and kinase antagonists and general implications with respect to interpretation of drug effects in mutant channel backgrounds.


Asunto(s)
AMP Cíclico/fisiología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/efectos de los fármacos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Genisteína/farmacología , Activación del Canal Iónico/fisiología , Canales de Potasio/efectos de los fármacos , Canales de Potasio/fisiología , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico/efectos de los fármacos , Ratones , Canales de Potasio/genética , Estructura Terciaria de Proteína
12.
Nature ; 425(6954): 200-5, 2003 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-12968185

RESUMEN

The family of hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channels are crucial for a range of electrical signalling, including cardiac and neuronal pacemaker activity, setting resting membrane electrical properties and dendritic integration. These nonselective cation channels, underlying the I(f), I(h) and I(q) currents of heart and nerve cells, are activated by membrane hyperpolarization and modulated by the binding of cyclic nucleotides such as cAMP and cGMP. The cAMP-mediated enhancement of channel activity is largely responsible for the increase in heart rate caused by beta-adrenergic agonists. Here we have investigated the mechanism underlying this modulation by studying a carboxy-terminal fragment of HCN2 containing the cyclic nucleotide-binding domain (CNBD) and the C-linker region that connects the CNBD to the pore. X-ray crystallographic structures of this C-terminal fragment bound to cAMP or cGMP, together with equilibrium sedimentation analysis, identify a tetramerization domain and the mechanism for cyclic nucleotide specificity, and suggest a model for ligand-dependent channel modulation. On the basis of amino acid sequence similarity to HCN channels, the cyclic nucleotide-gated, and eag- and KAT1-related families of channels are probably related to HCN channels in structure and mechanism.


Asunto(s)
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Canales Iónicos/química , Canales Iónicos/metabolismo , Proteínas del Tejido Nervioso , Secuencia de Aminoácidos , Animales , Sitios de Unión , AMP Cíclico/farmacología , GMP Cíclico/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Conductividad Eléctrica , Enlace de Hidrógeno , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico , Canales Iónicos/agonistas , Ligandos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Técnicas de Placa-Clamp , Canales de Potasio , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
13.
Neuron ; 44(5): 823-34, 2004 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-15572113

RESUMEN

Cyclic nucleotides directly enhance the opening of the tetrameric CNG and HCN channels, although the mechanism remains unclear. We examined why HCN and certain CNG subunits form functional homomeric channels, whereas other CNG subunits only function in heteromeric channels. The "defect" in the CNGA4 subunit that prevents its homomeric expression was localized to its C-linker, which connects the transmembrane domain to the binding domain and contains a tripeptide that decreases the efficacy of ligand gating. Remarkably, replacement of the homologous HCN tripeptide with the CNGA4 sequence transformed cAMP into an inverse agonist that inhibits HCN channel opening. Using analytical ultracentrifugation, we identified the structural basis for this gating switch: whereas cAMP normally enhances the assembly of HCN C-terminal domains into a tetrameric gating ring, inclusion of the CNGA4 tripeptide reversed this action so that cAMP now causes gating ring disassembly. Thus, ligand gating depends on the dynamic oligomerization of C-terminal binding domains.


Asunto(s)
Activación del Canal Iónico/fisiología , Canales Iónicos/fisiología , Ligandos , Secuencia de Aminoácidos , Animales , Bagres , Secuencia Conservada , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Femenino , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Canales Iónicos/genética , Datos de Secuencia Molecular , Oocitos , Canales de Potasio , Xenopus
14.
Nat Microbiol ; 2: 17104, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-28665414

RESUMEN

Multidrug-resistant (MDR) bacterial infections are a serious threat to public health. Among the most alarming resistance trends is the rapid rise in the number and diversity of ß-lactamases, enzymes that inactivate ß-lactams, a class of antibiotics that has been a therapeutic mainstay for decades. Although several new ß-lactamase inhibitors have been approved or are in clinical trials, their spectra of activity do not address MDR pathogens such as Acinetobacter baumannii. This report describes the rational design and characterization of expanded-spectrum serine ß-lactamase inhibitors that potently inhibit clinically relevant class A, C and D ß-lactamases and penicillin-binding proteins, resulting in intrinsic antibacterial activity against Enterobacteriaceae and restoration of ß-lactam activity in a broad range of MDR Gram-negative pathogens. One of the most promising combinations is sulbactam-ETX2514, whose potent antibacterial activity, in vivo efficacy against MDR A. baumannii infections and promising preclinical safety demonstrate its potential to address this significant unmet medical need.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Compuestos de Azabiciclo/química , Compuestos de Azabiciclo/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/farmacología , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Animales , Compuestos de Azabiciclo/uso terapéutico , Compuestos de Azabiciclo/toxicidad , Carbapenémicos/farmacología , Perros , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Farmacorresistencia Bacteriana Múltiple , Enterobacteriaceae/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Humanos , Ratones , Modelos Moleculares , Proteínas de Unión a las Penicilinas/antagonistas & inhibidores , Ratas , Sulbactam/química , Sulbactam/farmacología , Inhibidores de beta-Lactamasas/uso terapéutico , Inhibidores de beta-Lactamasas/toxicidad , beta-Lactamasas/metabolismo , beta-Lactamas/farmacología
15.
J Med Chem ; 57(11): 4584-97, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24828090

RESUMEN

Thymidylate kinase (TMK), an essential enzyme in bacterial DNA biosynthesis, is an attractive therapeutic target for the development of novel antibacterial agents, and we continue to explore TMK inhibitors with improved potency, protein binding, and pharmacokinetic potential. A structure-guided design approach was employed to exploit a previously unexplored region in Staphylococcus aureus TMK via novel interactions. These efforts produced compound 39, with 3 nM IC50 against S. aureus TMK and 2 µg/mL MIC against methicillin-resistant S. aureus (MRSA). This compound exhibits a striking inverted chiral preference for binding relative to earlier compounds and also has improved physical properties and pharmacokinetics over previously published compounds. An example of this new series was efficacious in a murine S. aureus infection model, suggesting that compounds like 39 are options for further work toward a new Gram-positive antibiotic by maintaining a balance of microbiological potency, low clearance, and low protein binding that can result in lower efficacious doses.


Asunto(s)
Antibacterianos/síntesis química , Proteínas Bacterianas/antagonistas & inhibidores , Bacterias Grampositivas/efectos de los fármacos , Nucleósido-Fosfato Quinasa/antagonistas & inhibidores , Piperidinas/síntesis química , Pirimidinonas/síntesis química , Animales , Antibacterianos/química , Antibacterianos/farmacología , Sitios de Unión , Cristalografía por Rayos X , Farmacorresistencia Bacteriana , Bacterias Grampositivas/enzimología , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Piperidinas/química , Piperidinas/farmacología , Conformación Proteica , Pirimidinonas/química , Pirimidinonas/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología , Estereoisomerismo , Relación Estructura-Actividad
16.
ACS Chem Biol ; 7(11): 1866-72, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-22908966

RESUMEN

There is an urgent need for new antibacterials that pinpoint novel targets and thereby avoid existing resistance mechanisms. We have created novel synthetic antibacterials through structure-based drug design that specifically target bacterial thymidylate kinase (TMK), a nucleotide kinase essential in the DNA synthesis pathway. A high-resolution structure shows compound TK-666 binding partly in the thymidine monophosphate substrate site, but also forming new induced-fit interactions that give picomolar affinity. TK-666 has potent, broad-spectrum Gram-positive microbiological activity (including activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus), bactericidal action with rapid killing kinetics, excellent target selectivity over the human ortholog, and low resistance rates. We demonstrate in vivo efficacy against S. aureus in a murine infected-thigh model. This work presents the first validation of TMK as a compelling antibacterial target and provides a rationale for pursuing novel clinical candidates for treating Gram-positive infections through TMK.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/enzimología , Nucleósido-Fosfato Quinasa/antagonistas & inhibidores , Enterococcus/efectos de los fármacos , Enterococcus/enzimología , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Humanos , Modelos Moleculares , Nucleósido-Fosfato Quinasa/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología
17.
J Med Chem ; 55(22): 10010-21, 2012 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-23043329

RESUMEN

Thymidylate kinase (TMK) is an essential enzyme in bacterial DNA synthesis. The deoxythymidine monophosphate (dTMP) substrate binding pocket was targeted in a rational-design, structure-supported effort, yielding a unique series of antibacterial agents showing a novel, induced-fit binding mode. Lead optimization, aided by X-ray crystallography, led to picomolar inhibitors of both Streptococcus pneumoniae and Staphylococcus aureus TMK. MICs < 1 µg/mL were achieved against methicillin-resistant S. aureus (MRSA), S. pneumoniae, and vancomycin-resistant Enterococcus (VRE). Log D adjustments yielded single diastereomers 14 (TK-666) and 46, showing a broad antibacterial spectrum against Gram-positive bacteria and excellent selectivity against the human thymidylate kinase ortholog.


Asunto(s)
Antibacterianos/farmacología , Benzoatos/farmacología , Enterococcus/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Nucleósido-Fosfato Quinasa/antagonistas & inhibidores , Staphylococcus aureus/efectos de los fármacos , Streptococcus pneumoniae/efectos de los fármacos , Timina/análogos & derivados , Resistencia a la Vancomicina/efectos de los fármacos , Antibacterianos/síntesis química , Benzoatos/síntesis química , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Nucleósido-Fosfato Quinasa/metabolismo , Relación Estructura-Actividad , Timina/síntesis química , Timina/farmacología
18.
J Biol Chem ; 283(41): 27937-27946, 2008 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-18667421

RESUMEN

The carbohydrate 2, 4-diacetamido-2, 4, 6-trideoxy-alpha-D-glucopyranose (BacAc(2)) is found in a variety of eubacterial pathogens. In Campylobacter jejuni, PglD acetylates the C4 amino group on UDP-2-acetamido-4-amino-2, 4, 6-trideoxy-alpha-D-glucopyranose (UDP-4-amino-sugar) to form UDP-BacAc(2). Sequence analysis predicts PglD to be a member of the left-handed beta helix family of enzymes. However, poor sequence homology between PglD and left-handed beta helix enzymes with existing structural data precludes unambiguous identification of the active site. The co-crystal structures of PglD in the presence of citrate, acetyl coenzyme A, or the UDP-4-amino-sugar were solved. The biological assembly is a trimer with one active site formed between two protomers. Residues lining the active site were identified, and results from functional assays on alanine mutants suggest His-125 is critical for catalysis, whereas His-15 and His-134 are involved in substrate binding. These results are discussed in the context of implications for proteins homologous to PglD in other pathogens.


Asunto(s)
Acetilglucosamina/análogos & derivados , Acetiltransferasas/química , Campylobacter jejuni/enzimología , Acetilglucosamina/biosíntesis , Acetilglucosamina/química , Acetiltransferasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión/fisiología , Catálisis , Cristalografía por Rayos X , Estructura Cuaternaria de Proteína/fisiología , Estructura Secundaria de Proteína/fisiología , Homología Estructural de Proteína
19.
J Biol Chem ; 283(21): 14728-38, 2008 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-18367452

RESUMEN

Activation of cyclic nucleotide-modulated channels such as CNG and HCN channels is promoted by ligand-induced conformational changes in their C-terminal regions. The primary intersubunit interface of these C termini includes two salt bridges per subunit, formed between three residues (one positively charged and two negatively charged amino acids) that we term the SB triad. We previously hypothesized that the SB triad is formed in the closed channel and breaks when the channel opens. Here we tested this hypothesis by dynamically manipulating the SB triad in functioning CNGA1 channels. Reversing the charge at positions Arg-431 and Glu-462, two of the SB triad residues, by either mutation or application of charged reagents increased the favorability of channel opening. To determine how a charge reversal mutation in the SB triad structurally affects the channel, we solved the crystal structure of the HCN2 C-terminal region with the equivalent E462R mutation. The backbone structure of this mutant was very similar to that of wild type, but the SB triad was rearranged such that both salt bridges did not always form simultaneously, suggesting a mechanism for the increased ease of opening of the mutant channels. To prevent movement in the SB triad, we tethered two components of the SB triad region together with cysteine-reactive cross-linkers. Preventing normal movement of the SB triad region with short cross-linkers inhibited channel opening, whereas longer cross-linkers did not. These results support our hypothesis that the SB triad forms in the closed channel and indicate that this region expands as the channel opens.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos/química , Canales Iónicos/metabolismo , Nucleótidos Cíclicos/química , Nucleótidos Cíclicos/metabolismo , Animales , Bovinos , Reactivos de Enlaces Cruzados/química , Cristalografía por Rayos X , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Electrofisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Canales Iónicos/genética , Modelos Moleculares , Mutación/genética , Oocitos , Técnicas de Placa-Clamp , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Xenopus laevis
20.
Biochemistry ; 45(45): 13659-69, 2006 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-17087520

RESUMEN

In Campylobacter jejuni 2,4-diacetamido-2,4,6-trideoxy-alpha-d-glucopyranose, termed N,N'-diacetylbacillosamine (Bac2,4diNAc), is the first carbohydrate in the glycoprotein N-linked heptasaccharide. With uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) as a starting point, two enzymes of the general protein glycosylation (Pgl) pathway in C. jejuni (PglF and PglE) have recently been shown to modify this sugar nucleotide to form UDP-2-acetamido-4-amino-2,4,6-trideoxy-alpha-d-glycopyranose (UDP-4-amino-sugar) [Schoenhofen, I. C., et al. (2006) J. Biol. Chem. 281, 723-732]. PglD has been proposed to catalyze the final step in N,N'-diacetylbacillosamine synthesis by N-acetylation of the UDP-4-amino-sugar at the C4 position. We have cloned, overexpressed, and purified PglD from the pgl locus of C. jejuni NCTC 11168 and identified it as the acetyltransferase that modifies the UDP-4-amino-sugar to form UDP-N,N'-diacetylbacillosamine, utilizing acetyl-coenzyme A as the acetyl group donor. The UDP-N,N'-diacetylbacillosamine product was purified from the reaction by reverse phase C18 HPLC and the structure determined by NMR analysis. Additionally, the full-length PglF was overexpressed and purified in the presence of detergent as a GST fusion protein, allowing for derivation of kinetic parameters. We found that the UDP-4-amino-sugar was readily synthesized from UDP-GlcNAc in a coupled reaction using PglF and PglE. We also demonstrate the in vitro biosynthesis of the complete heptasaccharide lipid-linked donor by coupling the action of eight enzymes (PglF, PglE, PglD, PglC, PglA, PglJ, PglH, and PglI) in the Pgl pathway in a single reaction vessel.


Asunto(s)
Acetilglucosamina/análogos & derivados , Acetiltransferasas/metabolismo , Campylobacter jejuni/enzimología , Acetilglucosamina/biosíntesis , Campylobacter jejuni/genética , Clonación Molecular , Cinética , Redes y Vías Metabólicas , Resonancia Magnética Nuclear Biomolecular , Polisacáridos/biosíntesis , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA