RESUMEN
Early in the SARS-CoV-2 pandemic, there was a high level of optimism based on observational studies and small controlled trials that treating hospitalized patients with convalescent plasma from COVID-19 survivors (CCP) would be an important immunotherapy. However, as more data from controlled trials became available, the results became disappointing, with at best moderate evidence of efficacy when CCP with high titers of neutralizing antibodies was used early in infection. To better understand the potential therapeutic efficacy of CCP, and to further validate SARS-CoV-2 infection of macaques as a reliable animal model for testing such strategies, we inoculated 12 adult rhesus macaques with SARS-CoV-2 by intratracheal and intranasal routes. One day later, 8 animals were infused with pooled human CCP with a high titer of neutralizing antibodies (RVPN NT50 value of 3,003), while 4 control animals received normal human plasma. Animals were monitored for 7 days. Animals treated with CCP had detectable but low levels of antiviral antibodies after infusion. In comparison to the control animals, CCP-treated animals had similar levels of viral RNA in upper and lower respiratory tract secretions, similar detection of viral RNA in lung tissues by in situ hybridization, but lower amounts of infectious virus in the lungs. CCP-treated animals had a moderate, but statistically significant reduction in interstitial pneumonia, as measured by comprehensive lung histology. Thus overall, therapeutic benefits of CCP were marginal and inferior to results obtained earlier with monoclonal antibodies in this animal model. By highlighting strengths and weaknesses, data of this study can help to further optimize nonhuman primate models to provide proof-of-concept of intervention strategies, and guide the future use of convalescent plasma against SARS-CoV-2 and potentially other newly emerging respiratory viruses.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Neutralizantes , Antivirales , COVID-19/terapia , Humanos , Inmunización Pasiva , Macaca mulatta , ARN Viral , Sueroterapia para COVID-19RESUMEN
There is an urgent need for effective therapeutic interventions against SARS-CoV-2, including new variants that continue to arise. Neutralizing monoclonal antibodies have shown promise in clinical studies. We investigated the therapeutic efficacy of a combination of two potent monoclonal antibodies, C135-LS and C144-LS that carry half-life extension mutations, in the rhesus macaque model of COVID-19. Twelve young adult macaques (three groups of four animals) were inoculated intranasally and intra-tracheally with a high dose of SARS-CoV-2 and 24 hours later, treated intravenously with a high (40 mg/kg) or low (12 mg/kg) dose of the C135-LS and C144-LS antibody combination, or a control monoclonal antibody. Animals were monitored for 7 days. Compared to the control animals, animals treated with either dose of the anti-SARS-CoV-2 antibodies showed similarly improved clinical scores, lower levels of virus replication in upper and lower respiratory tract, and significantly reduced interstitial pneumonia, as measured by comprehensive lung histology. In conclusion, this study provides proof-of-concept in support of further clinical development of these monoclonal antibodies against COVID-19 during early infection.
Asunto(s)
Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , COVID-19/terapia , Pulmón/patología , SARS-CoV-2/inmunología , Replicación Viral , Animales , Anticuerpos Monoclonales/sangre , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/patología , COVID-19/virología , Modelos Animales de Enfermedad , Femenino , Pulmón/diagnóstico por imagen , Macaca mulatta , Masculino , Análisis Multivariante , Radiografía , Sistema Respiratorio/virología , SARS-CoV-2/fisiología , Factores de Tiempo , Resultado del Tratamiento , Replicación Viral/inmunologíaRESUMEN
This report describes the clinical and histological findings, genetic study, and treatment in a 1.3-year-old rhesus macaque with bilateral cataracts and unilateral secondary glaucoma. Intravitreal injection of gentamicin decreased the intraocular pressure from 56 to <2 mm Hg. A putative genetic cause of the cataracts was not identified.
Asunto(s)
Catarata , Glaucoma , Animales , Catarata/diagnóstico , Catarata/genética , Catarata/veterinaria , Glaucoma/genética , Glaucoma/veterinaria , Presión Intraocular , Macaca mulatta/genéticaRESUMEN
The U.S. Food and Drug Administration only gave emergency use authorization of the BNT162b2 and mRNA-1273 SARS-CoV-2 vaccines for infants 6 months and older in June 2022. Yet questions regarding the durability of vaccine efficacy, especially against emerging variants, in this age group remain. We demonstrated previously that a two-dose regimen of stabilized prefusion Washington SARS-CoV-2 S-2P spike (S) protein encoded by mRNA encapsulated in lipid nanoparticles (mRNA-LNP) or purified S-2P mixed with 3M-052, a synthetic Toll-like receptor (TLR) 7/8 agonist, in a squalene emulsion (Protein+3M-052-SE) was safe and immunogenic in infant rhesus macaques. Here, we demonstrate that broadly neutralizing and spike-binding antibodies against variants of concern (VOCs), as well as T cell responses, persisted for 12 months. At 1 year, corresponding to human toddler age, we challenged vaccinated rhesus macaques and age-matched nonvaccinated controls intranasally and intratracheally with a high dose of heterologous SARS-CoV-2 B.1.617.2 (Delta). Seven of eight control rhesus macaques exhibited severe interstitial pneumonia and high virus replication in the upper and lower respiratory tract. In contrast, vaccinated rhesus macaques had faster viral clearance with mild to no pneumonia. Neutralizing and binding antibody responses to the B.1.617.2 variant at the day of challenge correlated with lung pathology and reduced virus replication. Overall, the Protein+3M-052-SE vaccine provided superior protection to the mRNA-LNP vaccine, emphasizing opportunities for optimization of current vaccine platforms. The observed efficacy of both vaccines 1 year after vaccination supports the implementation of an early-life SARS-CoV-2 vaccine.
Asunto(s)
COVID-19 , Vacunas Virales , Animales , Humanos , Lactante , SARS-CoV-2 , Vacunas contra la COVID-19 , Macaca mulatta , Vacuna BNT162 , Anticuerpos Antivirales , Anticuerpos NeutralizantesRESUMEN
Passively administered monoclonal antibodies (mAbs) given before or after viral infection can prevent or blunt disease. Here, we examine the efficacy of aerosol mAb delivery to prevent infection and disease in rhesus macaques inoculated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant via intranasal and intratracheal routes. SARS-CoV-2 human mAbs or a human mAb directed to respiratory syncytial virus (RSV) are nebulized and delivered using positive airflow via facemask to sedated macaques pre- and post-infection. Nebulized human mAbs are detectable in nasal, oropharyngeal, and bronchoalveolar lavage (BAL) samples. SARS-CoV-2 mAb treatment significantly reduces levels of SARS-CoV-2 viral RNA and infectious virus in the upper and lower respiratory tracts relative to controls. Reductions in lung and BAL virus levels correspond to reduced BAL inflammatory cytokines and lung pathology. Aerosolized antibody therapy for SARS-CoV-2 could be effective for reducing viral burden and limiting disease severity.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Macaca mulatta , COVID-19/patología , Aerosoles y Gotitas Respiratorias , Pulmón/patología , Anticuerpos Antivirales , Replicación Viral , Anticuerpos MonoclonalesRESUMEN
The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated coronavirus disease (COVID-19) has led to a pandemic of unprecedented scale. An intriguing feature of the infection is the minimal disease in most children, a demographic at higher risk for other respiratory viral diseases. To investigate age-dependent effects of SARS-CoV-2 pathogenesis, we inoculated two rhesus macaque monkey dam-infant pairs with SARS-CoV-2 and conducted virological and transcriptomic analyses of the respiratory tract and evaluated systemic cytokine and Ab responses. Viral RNA levels in all sampled mucosal secretions were comparable across dam-infant pairs in the respiratory tract. Despite comparable viral loads, adult macaques showed higher IL-6 in serum at day 1 postinfection whereas CXCL10 was induced in all animals. Both groups mounted neutralizing Ab responses, with infants showing a more rapid induction at day 7. Transcriptome analysis of tracheal airway cells isolated at day 14 postinfection revealed significant upregulation of multiple IFN-stimulated genes in infants compared with adults. In contrast, a profibrotic transcriptomic signature with genes associated with cilia structure and function, extracellular matrix composition and metabolism, coagulation, angiogenesis, and hypoxia was induced in adults compared with infants. Our study in rhesus macaque monkey dam-infant pairs suggests age-dependent differential airway responses to SARS-CoV-2 infection and describes a model that can be used to investigate SARS-CoV-2 pathogenesis between infants and adults.
Asunto(s)
COVID-19 , Animales , Macaca mulatta , Pulmón/patología , SARS-CoV-2 , Replicación ViralRESUMEN
Anti-viral monoclonal antibody (mAb) treatments may provide immediate but short-term immunity from coronavirus disease 2019 (COVID-19) in high-risk populations, such as people with diabetes and the elderly; however, data on their efficacy in these populations are limited. We demonstrate that prophylactic mAb treatment blocks viral replication in both the upper and lower respiratory tracts in aged, type 2 diabetic rhesus macaques. mAb infusion dramatically curtails severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-mediated stimulation of interferon-induced chemokines and T cell activation, significantly reducing development of interstitial pneumonia. Furthermore, mAb infusion significantly dampens the greater than 3-fold increase in SARS-CoV-2-induced effector CD4 T cell influx into the cerebrospinal fluid. Our data show that neutralizing mAbs administered preventatively to high-risk populations may mitigate the adverse inflammatory consequences of SARS-CoV-2 exposure.
Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , COVID-19/prevención & control , SARS-CoV-2/inmunología , Envejecimiento/inmunología , Animales , COVID-19/líquido cefalorraquídeo , COVID-19/complicaciones , COVID-19/inmunología , Complicaciones de la Diabetes/inmunología , Complicaciones de la Diabetes/virología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/inmunología , Femenino , Humanos , Activación de Linfocitos , Macaca mulatta , Masculino , Neuritis/inmunología , Neuritis/prevención & control , Profilaxis Pre-Exposición , Linfocitos T/inmunología , Replicación Viral/inmunologíaRESUMEN
Early in the SARS-CoV-2 pandemic, there was a high level of optimism based on observational studies and small controlled trials that treating hospitalized patients with convalescent plasma from COVID-19 survivors (CCP) would be an important immunotherapy. However, as more data from controlled trials became available, the results became disappointing, with at best moderate evidence of efficacy when CCP with high titers of neutralizing antibodies was used early in infection. To better understand the potential therapeutic efficacy of CCP, and to further validate SARS-CoV-2 infection of macaques as a reliable animal model for testing such strategies, we inoculated 12 adult rhesus macaques with SARS-CoV-2 by intratracheal and intranasal routes. One day later, 8 animals were infused with pooled human CCP with a high titer of neutralizing antibodies (RVPN NT 50 value of 3,003), while 4 control animals received normal human plasma. Animals were monitored for 7 days. Animals treated with CCP had detectable levels of antiviral antibodies after infusion. In comparison to the control animals, they had similar levels of virus replication in the upper and lower respiratory tract, but had significantly reduced interstitial pneumonia, as measured by comprehensive lung histology. By highlighting strengths and weaknesses, data of this study can help to further optimize nonhuman primate models to provide proof-of-concept of intervention strategies, and guide the future use of convalescent plasma against SARS-CoV-2 and potentially other newly emerging respiratory viruses. AUTHOR SUMMARY: The results of treating SARS-CoV-2 infected hospitalized patients with COVID-19 convalescent plasma (CCP), collected from survivors of natural infection, have been disappointing. The available data from various studies indicate at best moderate clinical benefits only when CCP with high titer of neutralizing antibodies was infused early in infection. The macaque model of SARS-CoV-2 infection can be useful to gain further insights in the value of CCP therapy. In this study, animals were infected with SARS-CoV-2 and the next day, were infused with pooled human convalescent plasma, selected to have a very high titer of neutralizing antibodies. While administration of CCP did not result in a detectable reduction in virus replication in the respiratory tract, it significantly reduced lung inflammation. These data, combined with the results of monoclonal antibody studies, emphasize the need to use products with high titers of neutralizing antibodies, and guide the future development of CCP-based therapies.
RESUMEN
Human clinical studies investigating use of convalescent plasma (CP) for treatment of coronavirus disease 2019 (COVID-19) have produced conflicting results. Outcomes in these studies may vary at least partly due to different timing of CP administration relative to symptom onset. The mechanisms of action of CP include neutralizing antibodies but may extend beyond virus neutralization to include normalization of blood clotting and dampening of inflammation. Unresolved questions include the minimum therapeutic titer in the CP units or CP recipient as well as the optimal timing of administration. Here, we show that treatment of macaques with CP within 24 h of infection does not reduce viral shedding in nasal or lung secretions compared to controls and does not detectably improve any clinical endpoint. We also demonstrate that CP administration does not impact viral sequence diversity in vivo, although the selection of a viral sequence variant in both macaques receiving normal human plasma was suggestive of immune pressure. Our results suggest that CP, administered to medium titers, has limited efficacy, even when given very early after infection. Our findings also contribute information important for the continued development of the nonhuman primate model of COVID-19. These results should inform interpretation of clinical studies of CP in addition to providing insights useful for developing other passive immunotherapies and vaccine strategies. IMPORTANCE Antiviral treatment options for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain very limited. One treatment that was explored beginning early in the pandemic (and that is likely to be tested early in future pandemics) is plasma collected from people who have recovered from coronavirus disease 2019 (COVID-19), known as convalescent plasma (CP). We tested if CP reduces viral shedding or disease in a nonhuman primate model. Our results demonstrate that administration of CP 1 day after SARS-CoV-2 infection had no significant impact on viral loads, clinical disease, or sequence diversity, although treatment with normal human plasma resulted in selection of a specific viral variant. Our results demonstrate that passive immunization with CP, even during early infection, provided no significant benefit in a nonhuman primate model of SARS-CoV-2 infection.
Asunto(s)
COVID-19/terapia , Inmunización Pasiva/métodos , SARS-CoV-2 , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Antivirales/uso terapéutico , COVID-19/inmunología , Modelos Animales de Enfermedad , Humanos , Inmunidad , Pulmón/patología , Macaca mulatta , Pandemias , Glicoproteína de la Espiga del Coronavirus/inmunología , Carga Viral , Replicación ViralRESUMEN
CD4 T follicular helper (Tfh) cells are important for the generation of durable and specific humoral protection against viral infections. The degree to which SARS-CoV-2 infection generates Tfh cells and stimulates the germinal center (GC) response is an important question as we investigate vaccine induced immunity against COVID-19. Here, we report that SARS-CoV-2 infection in rhesus macaques, either infused with convalescent plasma, normal plasma, or receiving no infusion, resulted in transient accumulation of pro-inflammatory monocytes and proliferating Tfh cells with a Th1 profile in peripheral blood. CD4 helper cell responses skewed predominantly toward a Th1 response in blood, lung, and lymph nodes. SARS-CoV-2 Infection induced GC Tfh cells specific for the SARS-CoV-2 spike and nucleocapsid proteins, and a corresponding early appearance of antiviral serum IgG antibodies. Collectively, the data show induction of GC responses in a rhesus model of mild COVID-19.
Asunto(s)
COVID-19/inmunología , Centro Germinal/inmunología , SARS-CoV-2/inmunología , Células T Auxiliares Foliculares/inmunología , Células TH1/inmunología , Animales , Anticuerpos Antivirales/sangre , COVID-19/terapia , Línea Celular , Chlorocebus aethiops , Proteínas de la Nucleocápside de Coronavirus/inmunología , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunidad Humoral/inmunología , Inmunización Pasiva , Inmunogenicidad Vacunal/inmunología , Inmunoglobulina G/sangre , Macaca mulatta , Masculino , Fosfoproteínas/inmunología , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero , Sueroterapia para COVID-19RESUMEN
CD4 T follicular helper (T fh ) cells are important for the generation of durable and specific humoral protection against viral infections. The degree to which SARS-CoV-2 infection generates T fh cells and stimulates the germinal center response is an important question as we investigate vaccine options for the current pandemic. Here we report that SARS-CoV-2 infection resulted in transient accumulation of pro-inflammatory monocytes and proliferating T fh cells with a T h 1 profile in peripheral blood. CD4 helper cell responses were skewed predominantly toward a T h 1 response in blood, lung, and lymph nodes. We observed the generation of germinal center T fh cells specific for the SARS-CoV-2 spike (S) and nucleocapsid (N) proteins, and a corresponding early appearance of antiviral serum IgG antibodies. Our data suggest that a vaccine promoting T h 1-type T fh responses that target the S protein may lead to protective immunity.
RESUMEN
CD4 T follicular helper (T fh ) cells are important for the generation of long-lasting and specific humoral protection against viral infections. The degree to which SARS-CoV-2 infection generates T fh cells and stimulates the germinal center response is an important question as we investigate vaccine options for the current pandemic. Here we report that, following infection with SARS-CoV-2, adult rhesus macaques exhibited transient accumulation of activated, proliferating T fh cells in their peripheral blood on a transitory basis. The CD4 helper cell responses were skewed predominantly toward a T h 1 response in blood, lung, and lymph nodes, reflective of the interferon-rich cytokine environment following infection. We also observed the generation of germinal center T fh cells specific for the SARS-CoV-2 spike (S) and nucleocapsid (N) proteins, and a corresponding early appearance of antiviral serum IgG antibodies but delayed or absent IgA antibodies. Our data suggest that a vaccine promoting Th1-type Tfh responses that target the S protein may lead to protective immunity.
RESUMEN
Canine oral papillomavirus (CPV1, also known as COPV), the most common cause of non-neoplastic papillomas, has not been shown to cause squamous cell carcinomas (SCC). Furthermore, malignant transformation of benign papillomas to SCC has only been reported in a single group of dogs with severe combined immunodeficiency infected with CPV2. Here, we report a series of 7 dogs with benign CPV1-associated papillomas with histologic evidence of CPV1 causing malignant transformation to carcinoma in situ and ultimately SCC. Expression of p53 and p16 proteins in CPV1-infected cells within the benign papillomas and lesions that progressed into SCC also supported an association between papillomavirus and malignant transformation. Moreover, our retrospective analysis indicated that while there have been increased numbers of viral papillomas with malignant transformation, the number of annually diagnosed canine viral papillomas has remained constant over the past decade in our laboratory. We speculate that either an altered host immunity from increased usage of immunosuppressive drugs or changing environmental factors, e.g. increase exposure to UV radiation, may cause an increased oncogenic potential of this "low-risk" virus. This study aims to raise awareness of the malignant potential of CPV1 and to encourage further investigations into the cause of this suspected change in its oncogenic potential.
Asunto(s)
Carcinoma de Células Escamosas/veterinaria , Enfermedades de los Perros/patología , Lambdapapillomavirus/aislamiento & purificación , Neoplasias de la Boca/veterinaria , Papiloma/veterinaria , Infecciones por Papillomavirus/veterinaria , Animales , Biomarcadores de Tumor/análisis , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/virología , Enfermedades de los Perros/virología , Perros , Histocitoquímica , Inmunohistoquímica , Microscopía , Neoplasias de la Boca/patología , Neoplasias de la Boca/virología , Papiloma/complicaciones , Papiloma/virología , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/virología , Estudios Retrospectivos , Inmunodeficiencia Combinada Grave/complicaciones , Inmunodeficiencia Combinada Grave/veterinariaRESUMEN
BACKGROUND: Copper associated hepatitis (CAH) has been increasingly recognized in dogs, and speculation exists that hereditary defects in copper metabolism have been exacerbated by increased environmental copper exposure. However, no broad epidemiological investigations have been performed to investigate quantitative hepatic copper concentrations ([Cu]H ) over time in both dogs that are (predisposed breed [PB]), and are not (non-predisposed breed [NPB]), considered at-risk for CAH. OBJECTIVES: To investigate [Cu]H in dogs and explore temporal, demographic, and histologic associations spanning 34 years. ANIMALS: 546 archived liver specimens. METHODS: Retrospective study. Searches of the Michigan State University Veterinary Diagnostic Laboratory database identified dogs that had undergone hepatic histopathologic assessment. Cases with archived tissue were reviewed and classified by breed, time period, and presence or absence of hepatitis. Inductively coupled plasma mass spectrometry was used to determine [Cu]H . RESULTS: In time period 2009-2015, median [Cu]H were 101 µg/g and 313 µg/g greater than median [Cu]H in time period 1982-1988 for NPB and PB dogs, respectively (P < .001 for both comparisons). The proportion of dogs with [CU]H > 300 µg/g increased in NPB (28% to 49%) and PB dogs (48% to 71%) during these periods (P = .002 for both comparisons). Median [Cu]H in dogs with hepatitis increased 3-fold over time in both NPB (P = .004) and PB populations (P < .001). CONCLUSIONS AND CLINICAL IMPORTANCE: The frequent recognition of CAH in recent years is likely due to the observed increases in [Cu]H over time. Importantly, effects are not limited to PB dogs.